basho

Introduction to riak _ensemble

Joseph Blomstedt (@jtuple)
Basho Technologies

AN [o

K

»
-
O

rlak ensemble
Paxos framework
for scalable
consistent system

sriak

node

node

node

node

node

noade

noadae

noae

basho

AN | [o

K

What about state?

sriak

App

App

Database'

sriak

Riak Riak Riak Riak

Efals
£l
Efals
£l

Riak Riak Riak Riak

sriak

What If I'm
writing
a database?

sriak

What about
embedded state?

sriak

»
-
O

Mnesia!

sriak

finconsistent_database,
running_partitioned_network}

QA sriak

CAP Theorem l

© sriak

bbbbb

Consistency '
Availability '
Pa rtition-tolerancel

© sriak

basho

Consistency | Availability |

& . sriak

basho

CP AP
Consistency I Availability |

Partition-tolerance '

© sriak

basho

Node 1| Node 2' Node 3' Node 4| Node 5'

client ' client | client |

bgg sriak

Node 1| Node 2' Node 5| [Node 4' Node 5'

client ' client client l

bgo W I'i q k

Node 1' Node 2' Node 3' Node 4| Node 5|

client l client ' client l

bg.; sriak

Node 1| Node 2' Node 53 Node 4' Node 5|

client I client client |

bgo W I'i q k

Node 1| Node 2' Node 53 Node 4' Node 5'

client ' client client l

bgo W I'i q k

1

Node 1| Node 2' Node 53 Node 4| Node 5'

client ' client client |

bgo W I'i q k

Node 1

|

1§

Node 2

Node 3

|}

!

Node 4

Node 5

client

@LQ

R

client

LA

client

client

client

KN

sriak

Eventual Consistency|

QA sriak

sriak

sriak

gl

sriak

26 sriak

fls

el]s
g b

1B,(]

1B,(]

1B,C]

sriak

Write Once
Immutable
Last Write Wins
Business Rules
Sets/Counters/Maps

sriak

Consensus l

© sriak

bbbbb

guorum consensus
chain replication
virtual synchrony

sriak

»
-
O

guorum consensus
chain replication
virtual synchrony

sriak

»
-
O

Quorum Consensus
Paxos

/K Atomic Broadcast
Raft

sriak

7
-
O

Paxos

sriak

basho

Node 1 Node 2 Node 5
N-++
prepare(N)
> >
promise(N, Vi) promise(N, V)
(. ...
Vi =T1(Vp, Vi, Vo)
commit(N, V\)
> >
accept(N)
(. ... ‘

sriak

Rinse/repeat for
each request

sriak

»
-
O

2 round trips/request

sriak

»
-
O

Multi-Paxos

sriak

»
-
O

First Request

sriak

Node 1

Node 2

ﬁ

N++; [=0

prepare(N, [)

Node 3

promise(N, |, Vi)

>

(

VN = f(Va Vi, Vo)

basho

commit(N, I, V)

promise(N, |, V()

>

accept(N,)

\.\\\'riak

EFach Additional Request

© sriak

bbbbb

Node 1 Node 2 Node 3

commit(N, I, V)

accept(N, I)

© sriak

basho

1 round trip/request
(common case)

sriak

Problem
Shipping entire state
each request IS
expensive

sriak

Solution

Paxos
+

Replicated Log

sriak

Problem
Now | have
N problems

© sriak

bbbbb

bbbbb

Log recovery
Log trimming
Rollup
Snapshots
Fault Recovery

sriak

basho

Paxos Made Live - An Engineering Perspective

Tushar Chandra

Robert Griesemer
Joshua Redstone

June 20, 2007

Abstract

We describe our experience in building a fault-tolerant data-base using the Paxos consensus algorithm.
Despite the existing literature in the field, building such a database proved to be non-trivial. We describe
selected algorithmic and engineering problems encountered, and the solutions we found for them. Our
measurements indicate that we have built a competitive system.

47

sriak

Better Solution
Build log replication
Into protocol

sriak

Better Solution
/K Atomic Broadcast
Raft

sriak

/ab

© sriak

bbbbb

basho

ZooKeeper: Wait-free coordination for Internet-scale systems

Patrick Hunt and Mahadev Konar
Yahoo! Gnid

{phunt, mahadev}@yahoo-inc.com

Abstract

In this paper, we describe ZooKeeper, a service for co-
ordinating processes of distributed applications. Since
ZooKeeper is part of critical infrastructure, ZooKeeper
aims to provide a simple and high performance kernel
for building more complex coordination primitives at the
client. It incorporates elements from group messaging,
shared registers, and distributed lock services in a repli-
cated, centralized service. The interface exposed by Zoo-
Keeper has the wait-free aspects of shared registers with
an event-driven mechanism similar to cache invalidations
of distributed file systems to provide a simple, yet pow-
erful coordination service.

The ZooKeeper interface enables a high-performance
service implementation. In addition to the wait-free
property, ZooKeeper provides a per client guarantee of
FIFO execution of requests and linearizability for all re-
quests that change the ZooKeeper state. These design de-
cisions enable the implementation of a high performance

Flavio P. Junqueira and Benjamin Reed
Yahoo! Research

{fpj,breed}@yahoco-inc.com

that implement mutually exclusive access to critical re-
sources.

One approach to coordination is to develop services
for each of the different coordination needs. For exam-
ple, Amazon Simple Queue Service [3] focuses specif-
ically on queuing. Other services have been devel-
oped specifically for leader election [25] and configura-
tion [27]. Services that implement more powerful prim-
itives can be used to implement less powerful ones. For
example, Chubby [6] is a locking service with strong
synchronization guarantees. Locks can then be used to
implement leader election, group membership, etc.

When designing our coordination service, we moved
away from implementing specific primitives on the
server side, and instead we opted for exposing an API
that enables application developers to implement their
own primitives. Such a choice led to the implementa-
tion of a coordination kernel that enables new primitives
without requiring changes to the service core. This ap-

munnalk camabhlan cailéicala favusn af nnnadicmatina adoacend tn

D

sriak

basho

A simple totally ordered broadcast protocol

Benjamin Reed
Yahoo! Research
Santa Clara, CA - USA

breed@yahoo-inc.com

ABSTRACT

This is a short overview of a totally ordered broadcast pro-
tocol used by ZooKeeper, called Zab. It is conceptually
easy to understand, is easy to implement, and gives high
performance. In this paper we present the requirements
ZooKeeper makes on Zab, we show how the protocol is used,
and we give an overview of how the protocol works.

5

Flavio P. Junqueira
Yahoo! Research

Barcelona, Catalunya - Spain

fpj@yahoo-inc.com

chines providing the service and always has a consistent view
of the ZooKeeper state. The service tolerates up to f crash
failures, and it requires at least 2f + 1 servers.
Applications use ZooKeeper extensively and have tens
to thousands of clients accessing it concurrently, so we re-
quire high throughput. We have designed ZooKeeper for
workloads with ratios of read to write operations that are
higher than 2:1; however, we have found that ZooKeeper's

rNnaG

K

basho

YAaHOO! LABS

TECHNICAL REPORT
YL-2010-0007

DISSECTING ZAB

Flavio Junqueira, Benjamin Reed, and Marco Serafini
Yahoo! Labs

701 First Ave
Sunnyvale, CA 94089
{fpj,breed, serafini@yahoo-inc.com}

AN | [o

K

basho

Zab: High-performance broadcast for
primary-backup systems

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini
Yahoo! Research
{fpj,breed, serafini}@yahoo-inc.com

Abstract—Zab is a crash-recovery atomic broadcast algorithm
we designed for the ZooKeeper coordination service. ZooKeeper
implements a primary-backup scheme in which a primary
process executes clients operations and uses Zab to propagate the
corresponding incremental state changes to backup processes'.
Due the dependence of an incremental state change on the
sequence of changes previously generated, Zab must guarantee
that if it delivers a given state change, then all other changes it
depends upon must be delivered first. Since primaries may crash,
Zab must satisfy this requirement despite crashes of primaries.

Applications using ZooKeeper demand high-performance from
the service, and consequently, one important goal is the ability
of having multiple outstanding client operations at a time.
Zab enables multiple outstanding state changes by guaranteeing
that at most one primary is able to broadcast state changes
and have them incorporated into the state, and by using a
synchronization phase while establishing a new primary. Before
this synchronization phase completes, a new primary does not
broadcast new state changes. Finally, Zab uses an identification
scheme for state changes that enables a process to easily identify
missing changes. This feature is key for efficient recovery.

Experiments and experience so far in production show that our
design enables an implementation that meets the performance
requirements of our applications. Our implementation of Zab
can achieve tens of thousands of broadcasts per second, which
is sufficient for demanding systems such as our Web-scale
applications.

Index Terms—Fault tolerance, Distributed algorithms, Primary
backup, Asynchronous consensus, Atomic broadcast

o4

scheme [5], [6], [7] to maintain the state of replica processes
consistent. With ZooKeeper, a primary process receives all
incoming client requests, executes them, and propagates the
resulting non-commutative, incremental state changes in the
form of transactions to the backup replicas using Zab, the
ZooKeeper atomic broadcast protocol. Upon primary crashes,
processes execute a recovery protocol both to agree upon a
common consistent state before resuming regular operation
and to establish a new primary to broadcast state changes. To
exercise the primary role, a process must have the support of
a quorum of processes. As processes can crash and recover,
there can be over time multiple primaries and in fact the
same process may exercise the primary role multiple times. To
distinguish the different primaries over time, we associate an
instance value with each established primary. A given instance
value maps to at most one process. Note that our notion
of instance shares some of the properties of views of group
communication [8], but it presents some key differences. With
group communication, all processes in a given view are able to
broadcast, and configuration changes happen when any process
joins or leaves. With Zab, processes change to a new view (or
primary instance) only when a primary crashes or loses support
from a quorum.

Critical to the design of Zab is the observation that each
state change is incremental with respect to the previous state,

sriak

»
-
O

riak zab

sriak

http://raftconsensus.github.io/

© sriak

bbbbb

basho

In Search of an Understandable Consensus Algorithm

Diego Ongaro and John Ousterhout
Stanford University
(Draft of October 7, 2013)

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it is as efficient as Paxos, but its structure is different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for building
practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than
Paxos. Raft also includes a new mechanism for changing
the cluster membership, which uses overlapping majori-
ties to guarantee safety.

5

terminism and the ways servers can be inconsistent with
each other). A user study with 43 students at two univer-
sities shows that Raft is significantly easier to understand
than Paxos: after learning both algorithms, students were
able to answer questions about Raft 23% better than ques-
tions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [28, 21]), but it has several novel features:

e Strong leader: Raft uses a stronger form of leader-
ship than other consensus algorithms. For example,
log entries only flow from the leader to other servers.
This simplifies the management of the replicated log
and makes Raft easier to understand.

e Leader election: Raft uses randomized timers to

AN §

ak

»
-
O

raftconsensus.github.io

sriak

http://raftconsensus.github.io/

7
-
O

rafter

sriak

http://raftconsensus.github.io/

rlak ensemble l

© sriak

bbbbb

»
-
O

rlak ensemble
Paxos framework
for scalable
consistent system

sriak

Problem
Shipping entire state
each request IS
expensive

sriak

7
-
O

Solution
Micro-states

sriak

Also solves
Scalability

© sriak

bbbbb

»
-
O

Key/Value

sriak

Each key Is
Independent state

sriak

7
-
O

Semantics

sriak

Conditional
single key
atomic operations

sriak

get/modify/put
fails If object changed
(eg. concurrent put)

© sriak

bbbbb

7
-
O

Design

sriak

Simple multi-paxos
per key

© sriak

bbbbb

1B keys

1B consensus groups?

sriak

NO

sriak

Partition keys across
N consensus groups

sriak

»
-
O

Partition keys across
N ensembles

sriak

Ensembles emulate
DAX0s per key

sriak

Each Ensemble
Elects leader
Establishes epoch
Supports get/put/modify

© sriak

bbbbb

»
-
O

Establish a new epoch

sriak

Node 1

Node 2

ﬁ

N++; [=0

prepare(N, [)

Node 3

promise(N, |, Vi)

>

(

VN = f(Va Vi, Vo)

basho

commit(N, I, V)

promise(N, |, V()

>

accept(N,)

\.\\\'riak

»
-
O

consensus state
epoch
seguence
membership
leader

sriak

K/V objects
epoch
sequence
Key
value

sriak

Put

sriak

Node 1 Node 2
obj.epoch < epoch
get(Key)
>

Node 3

reply(Epochg, Seqg, Valg)

Latest = latest(Val,, Valg, Val,)
Val = modify(Latest)

basho

write(Epoch, ++Seq, Val)

(.. .

reply(Epochg, Seqg, Val)

ack(Epoch, Seq)

Node 1

ﬁ

obj.epoch == epoch

Latest = local_get(Key)
Val = modify(Latest)

basho

Node 2 Node 3
write(Epoch, ++5Seq, Val)
> >l
ack(Epoch, Seq)
(..
Friak

2 roundtrips/put (worst)
1 roundtrip/put (best)

© sriak

ooooo

Get

sriak

Node 1 Node 2

W

obj.epoc

N < epoch

get(Key)

Node 3

>

Val = latest(Val,, Valg, Val,)
Val.epoch = epoch

basho

write(Epoch, ++Seq, Val)

reply(Epochg, Seqg, Valg) || reply(Epoch., Seq, Val)
(.. B e e e AR e T e A T

ack(Epoch, Seq)

Node 1

[

Node 2

obj.epoch == epoch

Reply = local get(Key)

basho

Node 3

sriak

2 roundtrips/get (worst)
0 roundtrip/get (best)

© sriak

ooooo

| eader abandons
leadership If any quorum
operation ever fails

QA sriak

Which forces new epoch
to be established

© sriak

bbbbb

»
-
O

Partial Writes

sriak

»
-
O

falled partial

epoch
2

epoch

sriak

»
-
O

read / rewrite / reply X

epoch
5

epoch

sriak

»
-
O

read / repair / reply X

epoch
5

epoch

sriak

Architecture l

© sriak

bbbbb

..._router_sup '

L

rilak_ensemble sup

..._manager '

0

©

|| ..._router l

basho

..._peer sup l
LL

i ... peer I

sriak

ensemble

riak_kv_ensemble peer

riak_ensemble_backend

sriak

%% Initialization callback that returns initial module state.
-callback init(ensemble_1d(), peer_id(), [any()]) -> state().

& sriak

basho

%% Create a new opaque key/value object using whatever
%% representation the defining module desires.
-callback new_obj(epoch(), seq(), key(), value()) -> obj().

%% Accessors to retrieve epoch/seq/key/value from an opaque object.
-callback obj_epoch(obj()) -> epoch().

-callback obj_seq (obj()) -> seq().

-callback obj_key (obj()) -> term().

-callback obj_value(obj()) -> term().

%% Setters for epoch/seq/value for opaque objects.
-callback set_obj_epoch(epoch(), obj()) -> obj().
-callback set_obj_seq (seq(), obj()) -> obj().
-callback set_obj_value(term(), obj()) -> obj().

bgé, sriak

%% Callback for get operations. Responsible for sending a reply
%% to the waiting from' process using {@link reply/2}.
-callback get(key(), from(), state()) -> state().

%% Callback for put operations. Responsible for sending a reply
%% to the waiting from' process using {@link reply/2}.
-callback put(Ckey(), obj(), from(), state()) -> state().

© sriak

basho

%% Callback for sync_request sent from a remote peer that wants to
%% sync with this peer. Responsible for sending a reply to the

%% waiting from' peer using {@link reply/2}.

-callback sync_request(from(), state()) -> state().

%% Callback that should do whatever 1s necessary to bring this peer

%% up-to-date. Passed in a list of replies generated by "sync_request’

%% from a quorum of peers from each view. This callback can either

%% directly make the peer current and return "ok', or initiate some

%% longer lived background process and return "async', followed by

%% calling {@link sync_complete/1} or {@link sync_failed/1} when

%% finished/failed.

-callback sync([{peer_1d(), any()}], state()) -> {ok, state()} I
{async, state()} I
{{error,_}, state()}.

& sriak

%% Callback for periodic leader tick. This function 1is called

%% periodically by an elected leader. Can be used to implement

%% custom housekeeping.

-callback tick(epoch(), seq(), peer_i1id(), views(), state()) -> state().

-callback ping(state()) -> {oklasynclfailed, state()}.

& sriak

basho

7
-
O

Clustering

sriak

gossIp manager gossip

/7 =N

manager gossip

o a—

manager

state state

© sriak

basho

basho

Id

nodes

ensembles

enabled

nodel

false

sriak

enable manager

o

state

© sriak

basho

Id

nodes

ensembles

enabled

bg.; sriak

manager peer_sup root

-> > (peen

state

© sriak

basho

id B
nodes node?
ensembles ==
enabled false

Id

nodes

ensembles

enabled

bgo W I'i q k

cluster cluster cluster

Node 1' Node 2' Node 3'

© sriak

basho

join

cluster cluster cluster

Node 1' Node 2' Node 3'

© sriak

basho

cluster

Node 1| Node 2' Node 3'

© sriak

basho

7
-
O

Creating Ensemble

sriak

create ensemble

directory

manager

directory directory
manager manager
root peer root peer

root peer

AN | [o

K

directory

directory

manager

directory

manager

root peer

manager

root peer

root peer

AN | [o

K

directory

directory

manager

directory

manager

root peer

manager

root peer

root peer

AN | [o

K

directory

directory

manager

directory

manager

root peer

manager

root peer

foo peer

root peer

foo peer

router

router

foo peer

router

router

router

router

router

router

router

router

router

router

AN | [o

K

election

directory directory directory
manager manager manager
root peer root peer root peer
foo peer foo peer foo peer
router || router router | | router router || router
router || router router | | router router || router

sriak

directory

directory

manager

directory

manager

root peer

manager

root peer

foo peer

root peer

foo peer

router

router

foo peer

router

router

router

router

router

router

router

router

router

router

sriak

7
-
O

Membership

sriak

© sriak

bbbbb

»
-
O

rlak ensemble
Paxos framework
for scalable
consistent system

sriak

Questions? |

© sriak

bbbbb

