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Write Once
Immutable
Last Write Wins
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Node 1 Node 2 Node 5
N-++
prepare(N)
> >
promise(N, Vi) promise(N, V)
(. ...............................................................................................
Vi =T1(Vp, Vi, Vo)
commit(N, V\)
> >
accept(N)
(. ............................................................................................. ‘
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N++; [=0

prepare(N, [)
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VN = f(Va Vi, Vo)
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commit(N, I, V)

promise(N, |, V()

>

accept(N, )
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Problem
Shipping entire state
each request IS
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Paxos Made Live - An Engineering Perspective

Tushar Chandra

Robert Griesemer
Joshua Redstone

June 20, 2007

Abstract

We describe our experience in building a fault-tolerant data-base using the Paxos consensus algorithm.
Despite the existing literature in the field, building such a database proved to be non-trivial. We describe
selected algorithmic and engineering problems encountered, and the solutions we found for them. Our
measurements indicate that we have built a competitive system.
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Build log replication
Into protocol
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ZooKeeper: Wait-free coordination for Internet-scale systems

Patrick Hunt and Mahadev Konar
Yahoo! Gnid

{phunt, mahadev}@yahoo-inc.com

Abstract

In this paper, we describe ZooKeeper, a service for co-
ordinating processes of distributed applications. Since
ZooKeeper is part of critical infrastructure, ZooKeeper
aims to provide a simple and high performance kernel
for building more complex coordination primitives at the
client. It incorporates elements from group messaging,
shared registers, and distributed lock services in a repli-
cated, centralized service. The interface exposed by Zoo-
Keeper has the wait-free aspects of shared registers with
an event-driven mechanism similar to cache invalidations
of distributed file systems to provide a simple, yet pow-
erful coordination service.

The ZooKeeper interface enables a high-performance
service implementation. In addition to the wait-free
property, ZooKeeper provides a per client guarantee of
FIFO execution of requests and linearizability for all re-
quests that change the ZooKeeper state. These design de-
cisions enable the implementation of a high performance

Flavio P. Junqueira and Benjamin Reed
Yahoo! Research

{fpj,breed}@yahoco-inc.com

that implement mutually exclusive access to critical re-
sources.

One approach to coordination is to develop services
for each of the different coordination needs. For exam-
ple, Amazon Simple Queue Service [3] focuses specif-
ically on queuing. Other services have been devel-
oped specifically for leader election [25] and configura-
tion [27]. Services that implement more powerful prim-
itives can be used to implement less powerful ones. For
example, Chubby [6] is a locking service with strong
synchronization guarantees. Locks can then be used to
implement leader election, group membership, etc.

When designing our coordination service, we moved
away from implementing specific primitives on the
server side, and instead we opted for exposing an API
that enables application developers to implement their
own primitives. Such a choice led to the implementa-
tion of a coordination kernel that enables new primitives
without requiring changes to the service core. This ap-

munnalk camabhlan cailéicala favusn af nnnadicmatina adoacend tn

D

sriak



basho

A simple totally ordered broadcast protocol

Benjamin Reed
Yahoo! Research
Santa Clara, CA - USA

breed@yahoo-inc.com

ABSTRACT

This is a short overview of a totally ordered broadcast pro-
tocol used by ZooKeeper, called Zab. It is conceptually
easy to understand, is easy to implement, and gives high
performance. In this paper we present the requirements
ZooKeeper makes on Zab, we show how the protocol is used,
and we give an overview of how the protocol works.

5

Flavio P. Junqueira
Yahoo! Research

Barcelona, Catalunya - Spain
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chines providing the service and always has a consistent view
of the ZooKeeper state. The service tolerates up to f crash
failures, and it requires at least 2f + 1 servers.
Applications use ZooKeeper extensively and have tens
to thousands of clients accessing it concurrently, so we re-
quire high throughput. We have designed ZooKeeper for
workloads with ratios of read to write operations that are
higher than 2:1; however, we have found that ZooKeeper's
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Zab: High-performance broadcast for
primary-backup systems

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini
Yahoo! Research
{fpj,breed, serafini}@yahoo-inc.com

Abstract—Zab is a crash-recovery atomic broadcast algorithm
we designed for the ZooKeeper coordination service. ZooKeeper
implements a primary-backup scheme in which a primary
process executes clients operations and uses Zab to propagate the
corresponding incremental state changes to backup processes'.
Due the dependence of an incremental state change on the
sequence of changes previously generated, Zab must guarantee
that if it delivers a given state change, then all other changes it
depends upon must be delivered first. Since primaries may crash,
Zab must satisfy this requirement despite crashes of primaries.

Applications using ZooKeeper demand high-performance from
the service, and consequently, one important goal is the ability
of having multiple outstanding client operations at a time.
Zab enables multiple outstanding state changes by guaranteeing
that at most one primary is able to broadcast state changes
and have them incorporated into the state, and by using a
synchronization phase while establishing a new primary. Before
this synchronization phase completes, a new primary does not
broadcast new state changes. Finally, Zab uses an identification
scheme for state changes that enables a process to easily identify
missing changes. This feature is key for efficient recovery.

Experiments and experience so far in production show that our
design enables an implementation that meets the performance
requirements of our applications. Our implementation of Zab
can achieve tens of thousands of broadcasts per second, which
is sufficient for demanding systems such as our Web-scale
applications.

Index Terms—Fault tolerance, Distributed algorithms, Primary
backup, Asynchronous consensus, Atomic broadcast

o4

scheme [5], [6], [7] to maintain the state of replica processes
consistent. With ZooKeeper, a primary process receives all
incoming client requests, executes them, and propagates the
resulting non-commutative, incremental state changes in the
form of transactions to the backup replicas using Zab, the
ZooKeeper atomic broadcast protocol. Upon primary crashes,
processes execute a recovery protocol both to agree upon a
common consistent state before resuming regular operation
and to establish a new primary to broadcast state changes. To
exercise the primary role, a process must have the support of
a quorum of processes. As processes can crash and recover,
there can be over time multiple primaries and in fact the
same process may exercise the primary role multiple times. To
distinguish the different primaries over time, we associate an
instance value with each established primary. A given instance
value maps to at most one process. Note that our notion
of instance shares some of the properties of views of group
communication [8], but it presents some key differences. With
group communication, all processes in a given view are able to
broadcast, and configuration changes happen when any process
joins or leaves. With Zab, processes change to a new view (or
primary instance) only when a primary crashes or loses support
from a quorum.

Critical to the design of Zab is the observation that each
state change is incremental with respect to the previous state,
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In Search of an Understandable Consensus Algorithm

Diego Ongaro and John Ousterhout
Stanford University
(Draft of October 7, 2013)

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it is as efficient as Paxos, but its structure is different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for building
practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than
Paxos. Raft also includes a new mechanism for changing
the cluster membership, which uses overlapping majori-
ties to guarantee safety.

5

terminism and the ways servers can be inconsistent with
each other). A user study with 43 students at two univer-
sities shows that Raft is significantly easier to understand
than Paxos: after learning both algorithms, students were
able to answer questions about Raft 23% better than ques-
tions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [28, 21]), but it has several novel features:

e Strong leader: Raft uses a stronger form of leader-
ship than other consensus algorithms. For example,
log entries only flow from the leader to other servers.
This simplifies the management of the replicated log
and makes Raft easier to understand.

e Leader election: Raft uses randomized timers to
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Micro-states
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get/modify/put
fails If object changed
(eg. concurrent put)
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Each Ensemble
Elects leader
Establishes epoch
Supports get/put/modify
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Node 1

Node 2
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N++; [=0

prepare(N, [)

Node 3

promise(N, |, Vi)

>

(

VN = f(Va Vi, Vo)
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commit(N, I, V)

promise(N, |, V()

>

accept(N, )
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K/V objects
epoch
sequence
Key
value
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Node 1 Node 2
obj.epoch < epoch
get(Key)
>

Node 3

reply(Epochg, Seqg, Valg)

Latest = latest(Val,, Valg, Val,)
Val = modify(Latest)
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write(Epoch, ++Seq, Val)

( .................................................... .

reply(Epochg, Seqg, Val)

ack(Epoch, Seq)
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obj.epoch == epoch

Latest = local_get(Key)
Val = modify(Latest)
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Node 2 Node 3
write(Epoch, ++5Seq, Val)
> >l
ack(Epoch, Seq)
( ..........................................................................................................
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2 roundtrips/put (worst)
1 roundtrip/put (best)
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Node 1 Node 2

W

obj.epoc

N < epoch

get(Key)

Node 3

>

Val = latest(Val,, Valg, Val,)
Val.epoch = epoch
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write(Epoch, ++Seq, Val)

reply(Epochg, Seqg, Valg) || reply(Epoch., Seq, Val)
( .................................................... B e e e AR e T e A T

ack(Epoch, Seq)
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%% Initialization callback that returns initial module state.
-callback init(ensemble_1d(), peer_id(), [any()]) -> state().
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%% Create a new opaque key/value object using whatever
%% representation the defining module desires.
-callback new_obj(epoch(), seq(), key(), value()) -> obj().

%% Accessors to retrieve epoch/seq/key/value from an opaque object.
-callback obj_epoch(obj()) -> epoch().

-callback obj_seq (obj()) -> seq().

-callback obj_key (obj()) -> term().

-callback obj_value(obj()) -> term().

%% Setters for epoch/seq/value for opaque objects.
-callback set_obj_epoch(epoch(), obj()) -> obj().
-callback set_obj_seq (seq(), obj()) -> obj().
-callback set_obj_value(term(), obj()) -> obj().
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%% Callback for get operations. Responsible for sending a reply
%% to the waiting from' process using {@link reply/2}.
-callback get(key(), from(), state()) -> state().

%% Callback for put operations. Responsible for sending a reply
%% to the waiting from' process using {@link reply/2}.
-callback put(Ckey(), obj(), from(), state()) -> state().
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%% Callback for sync_request sent from a remote peer that wants to
%% sync with this peer. Responsible for sending a reply to the

%% waiting from' peer using {@link reply/2}.

-callback sync_request(from(), state()) -> state().

%% Callback that should do whatever 1s necessary to bring this peer

%% up-to-date. Passed in a list of replies generated by "sync_request’

%% from a quorum of peers from each view. This callback can either

%% directly make the peer current and return "ok', or initiate some

%% longer lived background process and return "async', followed by

%% calling {@link sync_complete/1} or {@link sync_failed/1} when

%% finished/failed.

-callback sync([{peer_1d(), any()}], state()) -> {ok, state()} I
{async, state()} I
{{error,_}, state()}.
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%% Callback for periodic leader tick. This function 1is called

%% periodically by an elected leader. Can be used to implement

%% custom housekeeping.

-callback tick(epoch(), seq(), peer_i1id(), views(), state()) -> state().

-callback ping(state()) -> {oklasynclfailed, state()}.
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