Erlang Factory San Francisco - 2014-03-06

Benort Chesneau @benoitc

Scaling HTTP connections

ENK| A

http://enki-multimedia.org

About me

e Craftsman

 Working on and over the web
* Building open-sources solutions
 CouchDB committer and PMC member

« Member of the Python foundation, Gunicorn author

* Founder of the refuge project - http://refuge.io

http://refuge.io

Constraints

* Building many applications that requires a lot of
HTTP connections to external services

e Some built around couchbeam [1], and couchdb

2]

e Other just need a remote or local access to a
bunch of HT TP services

[1] http://github.com/benoitc/couchbeam

[2] http://couchdb.apache.org

http://github.com/benoitc/couchbeam
http://couchdb.apache.or

exampe: http resource proxy

Gateway

exampe: http resource proxy

allows applications to be built with the resources
offered by the proxy

transformations
lot of short/long-lived connections
no keep-alives

NO continuous connections

exampe: couchdb replicator

Replication task

A .4

listen for
changes

couchdb
source T

exampe: couchdb replicator

specific case when both the source and the target
are on different couchdb nodes

replicate multiple docs, with attachments (blobs)
thousands of connections (>10K/nodes)
Continuous short and long-lived connections

- crashing far too often

HTTP connection?

»can be on any transport

» Protocol on top of the transport
pHTTP |.1 /SPDY / HTTP 2x

Panorama of the different used HT TP clients

e HTTPC - HT TP client distributed with Erlang

* Ibrowse
http://github.com/cmullaparthi/ibrowse

« LHTTPC
http://github.com/esl/Ihttpc

 Hackney
http://github.com/benoitc/hackney

http://github.com/cmullaparthi/ibrowse
http://github.com/esl/lhttpc
http://github.com/benoitc/hackney

The CI0[0]K problems
from the client...

Fight with
the system limits

» number of file descriptors is limited
»RAM is limited

When it’s limited, reuse....

e To reduce the number of connection we
can cache locally

e can be a memory hog
* only get new contents (204/304 status)

* Or try to reuse the connection instead of
creating a new one

Control the process

wait for a socket event

wait (Socket, KeepAlive) e
inets:setopts(Socket, [{active, once}),

Timer = erlang:send after(Timeout, self(),
{timeout, Socket}),

\I

receive
{tcp closed, Socket}
%% remove from the pool
{timeout, Socket}
%% remove from the pool
{checkout To} -

gen_tcp: controlllng_pro ess (Socket, To),g

To ! Socket

after KeepAlive ->

(o)

%% :
give control the socket to a new process

end.

Control the process

e active mode

e can be used to build a pool (using a
gen_server for example)

e Or reuse the socket In the same process
to handle keepalive or pipelining In
HTTP1.1

* All the clients are using one technic or
another

Limit the concurrency

* Reusing a connection is not enough

 Under load you want to reduce the
number of concurrent connections

Limit the concurrency

e gueue the connections
e drop the connections

e allows any extra connections until you run out of
fds but only reuse some

e |httpc fork [1] or hackney_dispcount [2] pool

Reduce the memory usage

* memory consumption can be big
* yOu need to stream when receiving

* put also when you send

The network can be hostile

e g connection can crash
e at any time.

e A connection can be slow ... or too fast.

Figure 1. With 56ms RTT, fetching two files takes approximately 228ms, with 80% of that

time in network latency.

TCP connection #1, Request #1-2: HTTP + CSS

& Client @ Server
TCP
(SYN ACK)} ch

(SYN)

ACK
GET /html

(HTML response) HTTP

172 ms

(GET /css

(CSS response J

The network can be hostile

 "Expect: 100-continue” by default in hackney
e [ast parser to read headers

e Supervise your requests

Designing an
HTTP client

A usual client pattern

message passing

HTTP
>
sSource

send and receive : send and receive
messages . HTTP messages

A usual client pattern

* A process to maintain the state and
dialog with the socket

 Message passing is used to dialog with
this process

* [he socket is (maybe) fetched from the
olele]

client patterns - hackney v2 (0.11.1)

‘ e | TP
Source

send and receive
HTTP messages

Make the API less painful

hackney v1

{ok, , , Ctx}
{ok, Chunk, Ctxl

hackney v2

{ok, , , Ref}

}

hackney:request(get, <<“http”//friendpaste.com”>>),
= hackney:recv body(Ctx)

hackney:request(get, <<“http”//friendpaste.com”>>),

{ok, Chunk} = hackney:recv body(Ref)

http://friendpaste.com
http://friendpaste.com

client patterns - hackney v2 (0.11.1)

Supervisor

T

sen/d messages receive
Yo HTTP messages

send and recelive
HTTP messages

hackney v2 (0.11.1)

* All requests (active connections) have a
ref [D

* NO Message passing by default
* The intermediate non parsed butfer
(state) is kept in an ETS while reading the

response

* Only async connections open a new
Drocess

copy data

 \WWhen you send a message:
e data is copied to the other process

 When the binary size is > 64K only a
reference Is passed.

* The reference is kept around, until all the
process that have accessed to the
reference has been garbage collected
(ref count)

hackney v2 (0.11.1) - status

* solved my garbage collection problem
 simple AP]
* Easily handle multiple connections

* hackney_lib: extract the parsers and
HT TP protocol helpers

HTTP 2 designed for Erlang

e Stream—a bidirectional flow of bytes, or a virtual
channel, within a connection. Each stream has a

relative priority value and a unigque integer
identitier.

 Message—a complete sequence of frames that

maps to a logical message such as an HI' TP
request or a response.

e Frame

hackney v3

* hackney_connect: a connection manager
allowing different policies. Sort of specialised
pool for connections

e connection event handler

e Embrace HITP 2 - abstract the protocol in
Erlang messages

 While we are here add the welbsockets support

@benoitc

