
Benoit Chesneau @benoitc
Erlang Factory San Francisco - 2014-03-06

Scaling HTTP connections

http://enki-multimedia.org

• Craftsman

• Working on and over the web

• Building open-sources solutions

• CouchDB committer and PMC member

• Member of the Python foundation, Gunicorn author

• Founder of the refuge project - http://refuge.io

About me

http://refuge.io

• Building many applications that requires a lot of
HTTP connections to external services

• Some built around couchbeam [1], and couchdb
[2]

• Other just need a remote or local access to a
bunch of HTTP services

Constraints

[1] http://github.com/benoitc/couchbeam
[2] http://couchdb.apache.org

http://github.com/benoitc/couchbeam
http://couchdb.apache.or

HTTP API Gateway

EScouchdb AQMP HTTP SERVICES

exampe: http resource proxy

exampe: http resource proxy

• allows applications to be built with the resources
offered by the proxy

• transformations

• lot of short/long-lived connections

• no keep-alives

• no continuous connections

Replication task

couchdb
source

exampe: couchdb replicator

couchdb
target

listen for  
changes

Fetch

Send

exampe: couchdb replicator

• specific case when both the source and the target
are on different couchdb nodes

• replicate multiple docs, with attachments (blobs)

• thousands of connections (>10K/nodes)

• Continuous short and long-lived connections

• crashing far too often

HTTP connection?

‣can be on any transport	

‣Protocol on top of the transport	

‣HTTP 1.1 / SPDY / HTTP 2x

• HTTPC - HTTP client distributed with Erlang

• Ibrowse  
http://github.com/cmullaparthi/ibrowse

• LHTTPC  
http://github.com/esl/lhttpc

• Hackney 
http://github.com/benoitc/hackney

Panorama of the different used HTTP clients

http://github.com/cmullaparthi/ibrowse
http://github.com/esl/lhttpc
http://github.com/benoitc/hackney

The C10[0]K problems  
from the client…

Fight with  
the system limits
‣number of file descriptors is limited	

‣RAM is limited

• To reduce the number of connection we
can cache locally

• can be a memory hog

• only get new contents (204/304 status)

• Or try to reuse the connection instead of
creating a new one

When it’s limited, reuse….

Control the process

wait(Socket, KeepAlive) ->!
 inets:setopts(Socket, [{active, once}),!
! Timer = erlang:send_after(Timeout, self(), !
! ! ! ! ! ! ! ! ! {timeout, Socket}),!
 receive!
 {tcp_closed, Socket} ->!
 %% remove from the pool!
 {timeout, Socket} ->!
 %% remove from the pool!
 {checkout, To} ->!
 gen_tcp:controlling_process(Socket, To),!
 To ! Socket!
 !
 after KeepAlive ->!
 %%!
!
!
 end.

wait for a socket event

give control the socket to a new process

• active mode

• can be used to build a pool (using a
gen_server for example)

• or reuse the socket in the same process
to handle keepalive or pipelining in
HTTP1.1

• All the clients are using one technic or
another

Control the process

• Reusing a connection is not enough

• Under load you want to reduce the
number of concurrent connections

Limit the concurrency

Limit the concurrency

• queue the connections

• drop the connections

• allows any extra connections until you run out of
fds but only reuse some

• lhttpc fork [1] or hackney_dispcount [2] pool

• memory consumption can be big

• you need to stream when receiving

• but also when you send

Reduce the memory usage

• a connection can crash

• at any time.

• A connection can be slow … or too fast.

The network can be hostile

practice

DECEMBER 2013 | VOL. 56 | NO. 12 | COMMUNICATIONS OF THE ACM 45

 ! Inlined assets cannot be cached in-
dividually and inflate the parent docu-
ment. A common practice of inlining
small images also inflates their size by
more than 30% via base64 encoding
and breaks request prioritization in the
browser—typically, images are fetched
with lower priority by the browser to ac-
celerate page construction.

In short, many of the workarounds
have serious negative performance
implications. Web developers should
not have to worry about concatenating
files, spiriting images, inlining assets,
or domain sharding. All of these tech-
niques are stopgap workarounds for
limitations of the HTTP 1.1 protocol.
Hence, HTTP 2.0.

HTTP 2.0 Design and
Technical Goals
Developing a major revision of a pro-
tocol underlying all Web communica-
tion is a nontrivial task requiring a lot
of careful thought, experimentation,
and coordination. As such, it is impor-
tant to define a clear technical charter
and, arguably even more importantly,
define the boundaries of the project.
The intent is not to overhaul every de-
tail of the protocol but to make mean-
ingful though incremental progress to
improve Web performance.

With that, the HTTPbis Working
Group charter6 for HTTP 2.0 is scoped
as follows:

 ! Substantially and measurably im-
prove end-user-perceived latency in
most cases over HTTP 1.1 using TCP.

 ! Address the HOL (head-of-line)
blocking problem in HTTP.

 ! Do not require multiple connec-
tions to a server to enable parallelism,
thus improving its use of TCP, espe-
cially regarding congestion control.

 ! Retain the semantics of HTTP 1.1,
leveraging existing documentation,
including (but not limited to) HTTP
methods, status codes, URIs, and
where appropriate, header fields.

 ! Clearly define how HTTP 2.0 inter-
acts with HTTP 1.x, especially in inter-
mediaries.

 ! Clearly identify any new extensi-
bility points and policy for their appro-
priate use.

To deliver on these goals HTTP 2.0
introduces a new layering mechanism
onto TCP, which addresses the well-
known performance limitations of

HTTP 1.x. The application semantics
of HTTP remain untouched, and no
changes are being made to the core
concepts such as HTTP methods, sta-
tus codes, URIs, and header fields—
these changes are explicitly out of
scope. With that in mind, let’s take a
look “under the hood” of HTTP 2.0.

Request and response multiplex-
ing. At the core of all HTTP 2.0’s per-
formance enhancements is the new
binary framing layer (see Figure 2),
which dictates how HTTP messages
are encapsulated and transferred be-
tween the client and server. HTTP se-
mantics such as verbs, methods, and
headers are unaffected, but the way

they are encoded while in transit is
different.

With HTTP 1.x, if the client wants
to make multiple parallel requests to
improve performance, then multiple
TCP connections are required. This
behavior is a direct consequence of the
newline-delimited plaintext HTTP 1.x
protocol, which ensures only one re-
sponse at a time can be delivered per
connection—worse, this also results
in HOL blocking and inefficient use of
the underlying TCP connection.

The new binary framing layer in
HTTP 2.0 removes these limitations
and enables full request and response
multiplexing. The following HTTP 2.0

Figure 1. With 56ms RTT, fetching two files takes approximately 228ms, with 80% of that
time in network latency.

ACK
GET /html

56 ms

SYN ACK28 ms

0 msSYN

84 ms

server processing: 40 ms

HTML response124 ms

GET /css 152 ms

server processing: 20 ms

CSS response200 ms

TCP
56 ms

HTTP
172 ms

180 ms

TCP connection #1, Request #1-2: HTTP + CSS

close connection 228 ms

Client Server

Figure 2. HTTP 2.0 binary framing.

Network (IP)

Transport (TCP)

Session (TLS)
(optional)

Application (HTTP 2.0)
 POST /upload HTTP/1.1
 Host: www.example.org
 Content-Type: application/json
 Content-Length: 15

 {"msg":"hello"}

HEADERS frame

DATA frame

HTTP 2.0

HTTP 1.1

Binary Framing

• “Expect: 100-continue” by default in hackney

• Fast parser to read headers

• Supervise your requests

The network can be hostile

Designing an
HTTP client

message passing

HTTP
Source

A usual client pattern

send and receive
messages

send and receive
HTTP messages

• A process to maintain the state and
dialog with the socket

• Message passing is used to dialog with
this process

• The socket is (maybe) fetched from the
pool

A usual client pattern

HTTP
Source

client patterns - hackney v2 (0.11.1)

send and receive
HTTP messages

Make the API less painful

{ok, _, _, Ctx} = hackney:request(get, <<“http”//friendpaste.com”>>),!
{ok, Chunk, Ctx1} = hackney:recv_body(Ctx)

{ok, _, _, Ref} = hackney:request(get, <<“http”//friendpaste.com”>>),!
{ok, Chunk} = hackney:recv_body(Ref)

hackney v1

hackney v2

http://friendpaste.com
http://friendpaste.com

HTTP
Source

client patterns - hackney v2 (0.11.1)

send and receive
HTTP messages

receive
HTTP messagessend messages

supervisor

• All requests (active connections) have a
ref ID

• no message passing by default

• The intermediate non parsed buffer
(state) is kept in an ETS while reading the
response

• Only async connections open a new
process

hackney v2 (0.11.1)

• When you send a message:

• data is copied to the other process

• When the binary size is > 64K only a
reference is passed.

• The reference is kept around, until all the
process that have accessed to the
reference has been garbage collected
(ref count)

copy data

• solved my garbage collection problem

• simple API

• Easily handle multiple connections

• hackney_lib: extract the parsers and
HTTP protocol helpers

hackney v2 (0.11.1) - status

• Stream—a bidirectional flow of bytes, or a virtual
channel, within a connection. Each stream has a
relative priority value and a unique integer
identifier.

• Message—a complete sequence of frames that
maps to a logical message such as an HTTP
request or a response.

• Frame

HTTP 2 designed for Erlang

• hackney_connect: a connection manager
allowing different policies. Sort of specialised
pool for connections

• connection event handler

• Embrace HTTP 2 - abstract the protocol in
Erlang messages

• While we are here add the websockets support

hackney v3

?
@benoitc

