Controlling Datacenter Cooling Infrastructure

Erlang Factory SF 2014
Garret Smith
garret.smith@gmail.com

SYNAPS=ENS=




Discriminating Erlang hacker
Did not make video
Garret Smith

Discriminating Erlang hacker
Made “OTP 2” video
The “other” Garret Smith

SYNAPS=NS=




Unique Erlang application

Java / Erlang integration with

jinterface ]
Outline

Failover design
= Active/passive to horizontally scalable
Designing for reliability

®» Parallels in mechanical infrastructure

SYNAPS=NS=



= SynapSense formed to bring wireless

mesh networking to market

= Application: environmental monitoring

in datacenters Company
= Huge energy budget cooling expensive histo ry

assets (your cloud servers)

" |ncreasing energy (and carbon footprint)

awareness

= Energy savings & reliability with real-time

environmental monitoring

SYNAPS=ENS=




—

N

What we do SYNAPS=ENSE




Lots of analytics & visualization

e

ST A
In

—— e e R .« e

T T . ... TN

SSEEl .
-

.
S{TLLITLL)
___________I

all
f
£ |%
g I s
F

=
o
w

SYNAPS=NS=




Add intelligence to cooling

infrastructure

= Think motion-activated lights on a

much larger scale
Better efficiency — energy savings

Better reliability — fewer server failures

Analytics good,
SSS better




Effects of
adjustment
propagate
through
environment

Room geometry
Comm details

Configuration
data

Sensor data stream\ /

Control system

I \ Device I/O

SYNAPS=ENS=




= |solate control function How to build

= Embedded vs server-class a reliable

controller?
= Redundancy

=il e =



Language

C++

Java

Python

Erlang

CH

Why Erlang?

GC

no

no

yes

yes

yes

yes

Interactive
Shell

no

no

no

Ipython

yes

no

Cross
Platform

partial

partial

yes

yes

yes

no

Concurrency

library
support

library
support

library
support

lpython

language
level

library
support

HA

Distributed

DB
N/A 3'd party
N/A 3rd party
app
server 3" party
N/A 3rd party
Standard Standard
app
server 3™ party

Linux/ARM

yes

yes

yes

yes

yes

no

rel_llc(:;d Realtime
no hard
no hard
no no
yes no
yes soft
no no
Circa 2009

SYNAPS=NS=




Introducing Erlang to a Java system

SYNAPS=ENS=



= Start simple: zero impact to Java services

Easing into
Erlang

= Refine Java interface, managed by Erlang

= Merge code into Java service for efficiency




Port driver

Launch Java program for RMI
open_port(

{spawn, “java —jar rmi.jar’},
[{packet, 4}, hide])

-

.

BEAM

~

[ Port ]
Process
I E ‘ Process
Y,

Jinterface for marshaling Erlang terms

1 port_command()
\ 4 STDIN/STDOUT 4 )
JVM @ host2
JVM >
< [ Services ]
Java RMI \_ )

SYNAPS=ENS=




=  TCP sockets instead of STDIN/

Companion node STDOUT

= Remove single-process bottleneck

=  since remedied in R16

s ~ )
BEAM —node@host = Any process can now send /

Port
[ Process ] [ Process ] receive directl
iy \ ) Y
4 )
Java RMI S | VM@ host2
<€

. [Services] )

SYNAPS=ENS=

node-xl@host
JVM




Integrate with Java services

(" BEAM — controller@host1 N
Process
- [ ]) ( JVM —= host3 \
OtpNode .
app._server@ Services
(" BEAM — controller@host?2 N /7

\ J

[ Process J

. _J

il = =



Now for some code!
(snippets)




Start the Java node

Command = “java —jar app.jar ” ++ NodeName,
PortPid = open_port(

{spawn, CommandString},

[{cd, PrivDirectory}, stream, exit_status, hide]),
% net_adm:ping(NodeName) until ‘pong’
erlang:monitor_node(NodeName, true),
erlang:send({javaproc, NodeName}, link)

public static void main(String[] args) {

OtpNode node = new OtpNode(args[0]);
node.setCookie("test");
OtpMbox mbox = node.createMbox("javaproc");
OtpMsg link_message = mbox.receiveMsg(60 * 1000);
OtpErlangPid fromPid = link_message.getSenderPid();
OtpErlangObject link = link_message.getMsg();
if("link".equals(link.toString()) {

mbox.link(fromPid);
} else {

System.exit(-1);
}
...

) SYNAPS=ENS=




Flexible dispatching in Java

call(Function, Args) ->
Ref = make_ref(),
{javaproc, NodeName} ! {Ref, Function, Args},
receive
{Ref, Result} -> Result
end.

OtpMsg m = mbox.receiveMsg();

OtpErlangPid fromPid = m.getSenderPid();

OtpErlangTuple callWrapper = (OtpErlangTuple) m.getMsg();
OtpErlangRef replyRef = (OtpErlangRef) callWrapper.elementAt(0);
OtpErlangAtom function = (OtpErlangAtom) callWrapper.elementAt(1);
OtpErlangList args = (OtpErlangList) callWrapper.elementAt(2);

executorService.execute(new ApiFunction(mbox, fromPid, replyRef, function, args));




Class per APl method

class ApiMethod implements Runnable {
private OtpMbox mbox;
private OtpErlangPid fromPid;
private OtpErlangRef replyRef;
private OtpErlangAtom function;
private OtpErlangList args;

public ApiMethod(
final OtpMbox mbox,
final OtpErlangPid fromPid,
final OtpErlangRef replyRef,
final OtpErlangAtom function,
final OtpErlangList args) {
this.mbox = mbox;
this.fromPid = fromPid;
this.replyRef = replyRef;
this.function = function;
this.args = args;
}
public void run() {
OtpErlangObject resp = args; // Actual logic here, build response
OtpErlangTuple taggedReply = new OtpErlangTuple(
new OtpErlangObject[] {replyRef, resp});
mbox.send(fromPid, taggedReply);

}
}

SYNAPS=NS=




Failover evolution

From active/standby to horizontally scalable

SYNAPS=ENS=



Active/standby design

Run mnesia on both servers

= Cache config & process state

= Active node pushes to standby .
Start simple
Configure app with dist_ac

= ‘dist_ac’ part of Erlang networking kernel

= Keeps 1instance running across a cluster

Reload from cache for a warm start-up

SYNAPS=ENS=




Then we had our first netsplit

SYNAPS=ENS=



Same behavior as dist_ac, except:

= Recognize 2 running copies and stop 1

= Handle abnormal application exit differently Replace

1-process application (gen_leader) d |St_aC
Starts/stops other application (ours)

Application follows “leader”

SYNAPS=ENS=




= Processes are the authoritative source

= Data just to resurrect a process (tree) What to do
= Only using memory tables abOUt mnESia?

= 1 process—1row in table

SYNAPS=ENS=




= Join the group

pg2 - distributed
= Broadcast writes process groups

" Cache received tuples

write(Key, Data) ->
[Pid ! {Key, Data} || Pid <- pg2:get_members(proc_cache)].

=il =S e =



Use gen_leader processes internally

Start our app on all nodes

Distribute processes across nodes

Less to migrate when something fails

Faster & less disruptive failover

Scaling out

SYNAPS

=l =]




Designing for reliability

Parallels in mechanical infrastructure

SYNAPS=ENS=



= \What could fail? ]
Design

= What is likely to fail? for
failure

* What can you do about it?

SYNAPS=NS=



+1

2

SYNAPS=ENS



SYNAPS=NS=




= Peers monitoring each other
= Servers in active/passive configuration

= Linked processes

*= High-level / low-level

Systems
= Qur system monitoring air handlers monito ring
= Supervisors monitoring processes systems

= Autonomy
= Air handlers continue to operate if we fail

= Process failures localized




dist_ac & mnesia don’t like netsplits

= Path not taken: github.com/uwiger/unsplit

gen_leader can help

= github.com/garret-smith/gen_leader Recap

So can pg2, but for different scenarios

Reliability: design for failure

=il =S e =



garret.smith@gmail.com

Thank you
@GarretESmith for coming!

erlang-questions mailing list

=il e =



