
Planning for Overload

maybe you had overload

error_logger blowing up

blocking operations backing up

message queue explodes

eheap_alloc: Cannot allocate 298930300
bytes of memory (of type "old_heap")

your system is a bathroom sink

edge

deep

normal operations

temporary overload

prolonged overload

crash dump!

if we make it bigger, it’s gonna handle

more flow

optimize away!

bigger sinks!

bigger drains!

bigger pipes!

bottlenecks you don’t control

paid to solve the wrong problem

Overload must be planned for

it defines how you die

it defines premature optimization

it defines your margin of error

it defines your API

it defines your engineering

pick what has to give

block on input
(back-pressure)

drop data on the floor
(shed load)

it’s a business decision

simple back pressure

Make all calls that matter synchronous

do it all the way down

restrict the pool of callers at the edge

automate back-pressure through blocking

slow the users down (how do you tell them?)

issue: timeout management

what’s the typical operation delay? p99?

“Some application developers may push for no
timeout and argue it is OK to wait indefinitely. I

typically propose they set the timeout to 30
years.[...] Why is 30 years silly but infinity is

reasonable?” - Pat Helland

timers at the edge > timers deep

ask for permission

explicit form of back-pressure

identify the resources you want to block on

make the edge ask for permission

easy to underutilize a system

ask for permission

edge

deep

is more ok?

ask for permission

edge

deep

is more ok?

implementations

use processes or ETS tables to ask permission

memsup, cpusup, disksup in os_mon

overload module in SASL

https://github.com/jlouis/safetyvalve

https://github.com/uwiger/jobs

load shedding:

 “I don’t even need these requests”

random drop

when some loss is acceptable (sample size!)

can be made adaptive

works even better producer-side

random(Rate) ->
 maybe_seed(),
 random:uniform() =< Rate.

case drop:random(0.95) of
 true -> send();
 false -> drop()
end

queue buffers

more control than random drop

can drop from either end of the queue if full

useful if you need messages in order

better for low latency

no requirement for ordering

discard oldest data, or all data too old

stack buffers

implementations

lager does it on OTP errors for cascading
failures

https://github.com/ferd/pobox

https://github.com/ferd/dispcount

PO Box Model

important stuff

PO Box

Messages

Drop

Pid

Send it.

Got mail!

lllllllll

llllll
{dropped, 1}

active call

manipulate the PO Box’s mailbox

filter(_, 0) -> skip;
filter(<<>>, N) -> {drop, N};
filter(Msg, N) -> {{ok,Msg}, N-1}
...
pobox:active(BoxPid, fun filter/2, 25)

how do you tell users?

Block on sessions for back-pressure

Put usage limits, however high

Tell about losses (logplex L10 messages)

Respect End-to-End principles

Make idempotent APIs

Questions?

