

Building an IP Network Camera

Frank Hunleth
Twitter: @fhunleth

Erlang Factory 2014

Agenda

● Introducing Erlang to a project
● The camera
● Demo
● Embedded plumbing and development
● Performance
● Conclusion

Embedded Calibration Slide

Microcontrollers

32-bit Microprocessors

RTOS

General
purpose

Embedded
Linux

Android, iOS,
Ubuntu, Windows

Limited resource/
Specific purpose

This talk is focused in this area of embedded

How to use Language X in an
Embedded Project

● Low risk - can always implement in C first
● Worked in the past for TCL, Lua, and Javascript
● My first attempt to introduce Erlang to an organization

so that it could be used for real on the next project

Operating System

C/C++ framework

Config scripts,
diagnostic, DSL

C/C++ application

Fail

What makes Erlang/OTP interesting is its focus on
robust and scalable systems.

Try #3,4, or 5 - IP Camera

● Build a non-trivial embedded device
– Didn't need to be a camera, but wanted a device with a hard

real-time component and decent network usage

– Make sure that SW infrastructure supports production use cases

– Should benefit from in robustness or simplicity by using
Erlang/OTP

● Questions
– Will Erlang be too slow?

– Will Erlang require too much DRAM and Flash memory?

– Will developing Erlang in a cross-compiled environment be a pain?

– Will I miss all of the libraries and frameworks available in C?

– Will I have confidence in the Erlang/OTP platform?

Constraint

● If a feature exists in both
Erlang and an embedded
Linux environment, use the
Erlang version

● Examples
– No shell scripts

– No SysV init, systemd,
upstart (these provide
process initialization and
supervision)

Agenda

● Introducing Erlang to a project
● The camera
● Demo
● Embedded plumbing and development
● Performance
● Conclusion

Hardware Setup

Imager
MT9V034

GPS

Cape EEPROM

TI AM3359

MicroSD

10/100 Ethernet

Debug Console

Beaglebone Black

Lens Holder

AM3359

Hardware Components

ARM Cortex-A8
Programmable
Real-time Unit
(PRU)

I2C Master

Data/10

Pixel Clock,
HSync,VSync

Control - I2C

MT9V034 B&W
Imager

GPIO Reset

C
am

era Interfa ce

High-level Software Components

Frame capture

Hard real-time
PRU assembler

PRU

Frame 1Frame capture

C PortsErlang

JPEG encode
libjpeg-turbo

Erlang/ALE
GPIO

Erlang/ALE
I2C

Frame 2

Ready interrupt

Imager reset

Imager control

E
rlang/A

LE

Streaming
Video Handler

Static Handler
(index.html, JS)

C
ow

boy

WebSockets
Handler
(Control)

Motion JPEG Streaming

HTTP/1.1 200 OK
content-type: multipart/x-mixed-replace;
boundary=<boundary>

GET /video HTTP/1.1

Content-Type: image/jpeg

Content-Type: image/jpeg

--<boundary>

Content-Type: image/jpeg

--<boundary>

--<boundary>

Streaming Code

handle(Req, _State) ->
 Boundary = boundary(),
 Headers =
 [{<<"MIME-Version">>, <<"1.0">>},
 {<<"content-type">>, <<"multipart/x-mixed-replace; ",
 "boundary=", Boundary/binary>>}],
 {ok, Req2} = cowboy_req:chunked_reply(200, Headers, Req),
 send_first_picture(Req2),
 send_pictures(Req2).

send_pictures(Req) ->
 Pic = troodon_cam:get_next_picture(),
 Msg = [multipart_header(Pic), Pic, delimiter()],
 ok = cowboy_req:chunk(Msg, Req),
 send_pictures(Req).

Demo

Agenda

● Introducing Erlang to a project
● The camera
● Demo
● Embedded plumbing and development
● Performance
● Conclusion

Nerves-Project Work Flow

Erlang/OTP
applications

BEAMs and
cross-compiled

binaries

Erlang/OTP
release

Base Firmware
Image

SDCard image
and

firmware update
package

rebar or
erlang.mk

relx

fwtool + scripts

nerves-sdk
customizations to

Buildroot

Updated filesystem
on target

(Development)

relsync

Raw SDCard Image

Master Boot Record

Bootloaders

Root Filesystem A

 Read-only

Root Filesystem B

 Read-only

Application Data
Partition

 Read-write

Linux kernel
Erlang
Libraries
Main application

Ping-pong location
used when upgrading
the firmware

Majority of nonvolatile
memory for use by the
application

Raw images are only needed for initial code load and bulk device programming

relsync

● Reprogramming SDCards gets old quickly!!!
● relsync synchronizes the files in the generated Erlang/OTP

release directory with corresponding ones on the target
● Like rsync except

– Communicates via the Erlang distribution protocol

– Reloads modules that changed

– Runs scripts pre and post sync to stop and start Erlang/OTP
applications (needed to update ports)

● Limitations
– Target must have writable FS (currently using a union FS)

– NIFs and linked-in port drivers can't be updated

Initialization - Booting to Erlang

● erlinit
– Replacement for /sbin/init that starts an Erlang/OTP

release

– Similar to a release start script, but in C

– Supports remounting root fs with unionfs for
development

– Configurable via Linux kernel command line

Agenda

● Introducing Erlang to a project
● The camera
● Demo
● Embedded plumbing and development
● Performance
● Conclusion

Performance - Throughput

● Imager set to capture at 45 fps (22 ms/frame)
● Browser stats

– Average FPS ~43.5 fps (23 ms/frame)

– About 1 frame dropped per second

● Profiling revealed JPEG encode time taking 22-23.5
ms
– AM3358 doesn't support HW encoding

– Did not investigate tuning JPEG Turbo library

● Take away: Erlang is not a bottleneck

End-to-end Latency Measurements

Software Setup

Latency
Measurement App
(Erlang, of course)

More info: https://github.com/fhunleth/cam_latency

Timestamped
Frames

Received: 0.481 (~71 ms)

UART
via erlang-serial HTTP

via httpc

Latency Results

● Average frame latency 78 ms (best 66 ms,
worst 94 ms)

Exposure
time

Transfer
from

imager

JPEG
encode

Erlang /
Cowboy/
HTTP TX

Receive
HTTP
stream

Display
time

updates

~10ms 20 ms20 ms 23 ms1-11 ms

● Easily accounted for latencies - 54-66 ms
● Remaining latencies - 12-30 ms

– Not unexpected; requires more instrumentation

– Doubt that Erlang overhead is significant

Boot Time (4.38 seconds)

DRAM Usage (/proc/meminfo)

● Connect, stream for 5 seconds, disconnect, repeat

● erlang:memory/0 reports 7.7 MB at steady state

Footprint - 18 MB RootFS

3.5 MB 3.38 MB 1.9 MB 1.9 MB 7.39 MB

2.77 MB 1.56 MB 1.30 MB .34 .29 .22 .2 .16 .16 .1 .1

● Erlang/OTP release tools significantly trim footprint
● Usage on par with C++ frameworks like Qt

Conclusions

● Will Erlang be too slow?
– No. Lack of HW compression is the bottleneck as it should have been.

● Will Erlang require too much DRAM and Flash memory?
– No. Flash footprint was on par with C/C++ frameworks. DRAM usage stable.

● Will developing Erlang in a cross-compiled environment be a pain?
– Erlang shell + relsync can be pretty nice

● Will I miss all of the libraries and frameworks available in C?
– Cowboy is far superior to anything I had used in C/C++

– Still hit or miss when searching for Erlang libraries

● Will I have confidence in the Erlang/OTP platform?
– Yes - platform feels very robust (no unexplained crashes)

– Interface to C very easy

– Rough edges look easily fixed with time and effort

Nerves-Project

● All source code is open source
– Mostly MIT licensed

– Buildroot and build scripts are GPLv2

● Upcoming
– Hobby → Real products

– Documentation

– Network configuration improvements

– Elixir!!

● http://nerves-project.org

http://nerves-project.org/

Building an IP Network Camera

Frank Hunleth
Twitter: @fhunleth

Erlang Factory 2014

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

