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Embedded Calibration Slide

Microcontrollers

32-bit Microprocessors

RTOS

General
purpose

Embedded 
Linux

Android, iOS,
Ubuntu, Windows

Limited resource/
Specific purpose

This talk is focused in this area of embedded



  

How to use Language X in an 
Embedded Project

● Low risk - can always implement in C first
● Worked in the past for TCL, Lua, and Javascript
● My first attempt to introduce Erlang to an organization 

so that it could be used for real on the next project

Operating System

C/C++ framework

Config scripts, 
diagnostic, DSL

C/C++ application



  

Fail

What makes Erlang/OTP interesting is its focus on 
robust and scalable systems.



  

Try #3,4, or 5 - IP Camera

● Build a non-trivial embedded device
– Didn't need to be a camera, but wanted a device with a hard 

real-time component and decent network usage

– Make sure that SW infrastructure supports production use cases

– Should benefit from in robustness or simplicity by using 
Erlang/OTP

● Questions
– Will Erlang be too slow?

– Will Erlang require too much DRAM and Flash memory?

– Will developing Erlang in a cross-compiled environment be a pain?

– Will I miss all of the libraries and frameworks available in C?

– Will I have confidence in the Erlang/OTP platform?



  

Constraint

● If a feature exists in both 
Erlang and an embedded 
Linux environment, use the 
Erlang version

● Examples
– No shell scripts

– No SysV init, systemd, 
upstart (these provide 
process initialization and 
supervision)
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Hardware Setup

Imager
MT9V034

GPS

Cape EEPROM

TI AM3359

MicroSD

10/100 Ethernet

Debug Console

Beaglebone Black

Lens Holder



  

AM3359 

Hardware Components

ARM Cortex-A8
Programmable 
Real-time Unit 
(PRU)

I2C Master

Data/10

Pixel Clock,
HSync,VSync

Control - I2C

MT9V034 B&W 
Imager

GPIO Reset
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High-level Software Components

Frame capture

Hard real-time
PRU assembler

PRU

Frame 1Frame capture

C PortsErlang

JPEG encode
libjpeg-turbo

Erlang/ALE
GPIO

Erlang/ALE
I2C

Frame 2

Ready interrupt

Imager reset

Imager control

E
rlang/A

LE

Streaming 
Video Handler

Static Handler
(index.html, JS)

C
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WebSockets 
Handler
(Control)



  

Motion JPEG Streaming

HTTP/1.1 200 OK
content-type: multipart/x-mixed-replace; 
boundary=<boundary>

GET /video HTTP/1.1

Content-Type: image/jpeg

Content-Type: image/jpeg

--<boundary>

Content-Type: image/jpeg

--<boundary>

--<boundary>



  

Streaming Code

handle(Req, _State) ->
    Boundary = boundary(),
    Headers =
        [{<<"MIME-Version">>, <<"1.0">>},
         {<<"content-type">>, <<"multipart/x-mixed-replace; ",
                                "boundary=", Boundary/binary>>}],
    {ok, Req2} = cowboy_req:chunked_reply(200, Headers, Req),
    send_first_picture(Req2),
    send_pictures(Req2).

send_pictures(Req) ->
    Pic = troodon_cam:get_next_picture(),
    Msg = [multipart_header(Pic), Pic, delimiter()],
    ok = cowboy_req:chunk(Msg, Req),
    send_pictures(Req).



  

Demo
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Nerves-Project Work Flow

Erlang/OTP 
applications

BEAMs and 
cross-compiled 

binaries

Erlang/OTP 
release

Base Firmware 
Image

SDCard image
and

firmware update 
package

rebar or 
erlang.mk

relx

fwtool + scripts

nerves-sdk 
customizations to 

Buildroot

Updated filesystem 
on target

(Development)

relsync



  

Raw SDCard Image

Master Boot Record

Bootloaders

Root Filesystem A

        Read-only

Root Filesystem B

        Read-only

Application Data 
Partition

        Read-write

Linux kernel
Erlang
Libraries
Main application

Ping-pong location
used when upgrading
the firmware

Majority of nonvolatile
memory for use by the
application 

Raw images are only needed for initial code load and bulk device programming



  

relsync

● Reprogramming SDCards gets old quickly!!!
● relsync synchronizes the files in the generated Erlang/OTP 

release directory with corresponding ones on the target
● Like rsync except

– Communicates via the Erlang distribution protocol

– Reloads modules that changed

– Runs scripts pre and post sync to stop and start Erlang/OTP 
applications (needed to update ports)

● Limitations
– Target must have writable FS (currently using a union FS)

– NIFs and linked-in port drivers can't be updated



  

Initialization - Booting to Erlang

● erlinit
– Replacement for /sbin/init that starts an Erlang/OTP 

release

– Similar to a release start script, but in C

– Supports remounting root fs with unionfs for 
development

– Configurable via Linux kernel command line
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Performance - Throughput

● Imager set to capture at 45 fps (22 ms/frame)
● Browser stats

– Average FPS ~43.5 fps (23 ms/frame)

– About 1 frame dropped per second

● Profiling revealed JPEG encode time taking 22-23.5 
ms
– AM3358 doesn't support HW encoding

– Did not investigate tuning JPEG Turbo library

● Take away: Erlang is not a bottleneck



  

End-to-end Latency Measurements



  

Software Setup

Latency 
Measurement App
(Erlang, of course)

More info: https://github.com/fhunleth/cam_latency

Timestamped
Frames

Received: 0.481 (~71 ms)

UART
via erlang-serial HTTP

via httpc



  

Latency Results

● Average frame latency 78 ms (best 66 ms, 
worst 94 ms)

Exposure 
time

Transfer 
from 

imager

JPEG 
encode

Erlang / 
Cowboy/
HTTP TX

Receive 
HTTP 
stream

Display 
time

updates

~10ms 20 ms20 ms 23 ms1-11 ms

● Easily accounted for latencies - 54-66 ms
● Remaining latencies - 12-30 ms

– Not unexpected; requires more instrumentation

– Doubt that Erlang overhead is significant



  

Boot Time (4.38 seconds)



  

DRAM Usage (/proc/meminfo)

● Connect, stream for 5 seconds, disconnect, repeat

● erlang:memory/0 reports 7.7 MB at steady state 



  

Footprint - 18 MB RootFS 

3.5 MB 3.38 MB 1.9 MB 1.9 MB 7.39 MB

2.77 MB 1.56 MB 1.30 MB .34 .29 .22 .2 .16 .16 .1 .1

● Erlang/OTP release tools significantly trim footprint
● Usage on par with C++ frameworks like Qt



  

Conclusions

● Will Erlang be too slow?
– No. Lack of HW compression is the bottleneck as it should have been.

● Will Erlang require too much DRAM and Flash memory?
– No. Flash footprint was on par with C/C++ frameworks. DRAM usage stable.

● Will developing Erlang in a cross-compiled environment be a pain?
– Erlang shell + relsync can be pretty nice

● Will I miss all of the libraries and frameworks available in C?
– Cowboy is far superior to anything I had used in C/C++

– Still hit or miss when searching for Erlang libraries

● Will I have confidence in the Erlang/OTP platform?
– Yes - platform feels very robust (no unexplained crashes)

– Interface to C very easy

– Rough edges look easily fixed with time and effort



  

Nerves-Project

● All source code is open source
– Mostly MIT licensed

– Buildroot and build scripts are GPLv2

● Upcoming
– Hobby → Real products

– Documentation

– Network configuration improvements

– Elixir!!

● http://nerves-project.org

http://nerves-project.org/
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