
Finding the Needle in
the Haystack

(Troubleshooting
Distributed Systems)

Anthony Molinaro
Erlang Factory 2014

Wednesday, March 12, 14

Web Services have
gotten more complex

Wednesday, March 12, 14

1 Tier (AKA
Client/Server)

Wednesday, March 12, 14

2 Tier

Wednesday, March 12, 14

2 Tier Clustered

Wednesday, March 12, 14

2 Tier - SAAS

Wednesday, March 12, 14

3 Tier

Wednesday, March 12, 14

3 Tier Clustered

Wednesday, March 12, 14

3 Tier - SAAS

Wednesday, March 12, 14

N Tier/SOA

Wednesday, March 12, 14

N Tier/SOA - SAAS

Wednesday, March 12, 14

Troubleshooting
for most

• Looking at logs for errors

• Capturing and viewing performance
metrics, looking for visual patterns

• Try to reproduce errors based on a vague
ticket description or a log line

• This becomes harder when you have
dozens to hundreds of different systems to
look through

Wednesday, March 12, 14

Troubleshooting
Distributed Systems
• Perform an internet search for

"Troubleshooting Distributed Systems"

• "Traditional Approach"

• Geared towards overall system
performance monitoring

• use NTP/synced ids/log everything you
can/do something smart with it

Wednesday, March 12, 14

The Trouble with the
"Traditional Approach"
• Large data volumes (can be mitigated with

sampling)

• Overhead on all requests (can be mitigated
by going low level and forking packets)

• Geared towards general system
performance and not application specific
issues

Wednesday, March 12, 14

What are
Application Issues?
• A developer is trying to debug a web

request bridging multiple subsystems

• A customer calls a support number and
describes an issue

• A QA engineer is seeing unexpected
results with a new feature or bug fix

• A sales engineer notices as issue while
demoing a product

Wednesday, March 12, 14

What could cause
those issues?

• Actual bugs

• Data discrepancies

• Partially failed components or services

• PEBKAC

Wednesday, March 12, 14

A Possible Solution

• Cross language tracing of requests

• trigger a trace with an external input

• log lots of extra stuff for that request to
a central location via UDP

• provide a way to view the data and drill
down to the unexpected part

Wednesday, March 12, 14

Evolution of a Solution

• 3 use cases

• 2000: Search Advertising (Goto/
Overture)

• 2004: Content Match (Yahoo)

• 2010: Display Advertising (OpenX)

Wednesday, March 12, 14

Search Advertising
• Given some keywords sent to a search

engine

• Pick some Ads

• Include those ads in front of algorithmic
results.

• Goto.com pioneered this in the late 90s

• Overture turned this into a service around
2000

Wednesday, March 12, 14

2 Tier Distributed

Wednesday, March 12, 14

Use Case

• Customer account manager gets a call from
a customer who asks "Why am I not
getting ads?"

Wednesday, March 12, 14

Tools Available

• Light Weight Event System - lwes

• http://www.lwes.org/

• cross language event system

• UDP

• fire and forget messages (low overhead
on clients)

Wednesday, March 12, 14

Solution

• isotope

• demarcate a request via secret keywords

• identify the request via the timestamp

• if an isotope request, send lwes events
containing perl data structures to a
centralized server

• dump to a file and serve up in a browser

Wednesday, March 12, 14

Isotope

Wednesday, March 12, 14

Lessons Learned

• timestamps can lead to conflicts, so need to
add some other sort of id

• structured data can be useful

• making data accessible via an internal web
service can be useful

Wednesday, March 12, 14

Content Match

• Given the content of a web page

• Determine the subject

• Pick ads relevant to the subject

• Built this at Yahoo in the mid-2000s

Wednesday, March 12, 14

N Tier

Wednesday, March 12, 14

Use Cases

• Developers wonder "Where did my
request go?"

• which machines did it hit

• what data did it use to make it's decision

• Customer support gets asked "Why am I
not getting ads?"

Wednesday, March 12, 14

Tools

• lwes again

• multicast UDP

• command line listener of events

• similar to lwes-event-printing-listener in
lwes C distribution

• able to filter based on an id

Wednesday, March 12, 14

Solution
• llog

• demarcate request with a secret query
arg which accepted a non-zero positive
integer

• id was passed through all
communications between components

• when id is non-zero send extra
information via multicast lwes to network

• view trace in terminal

Wednesday, March 12, 14

But what about
customer support?
• Customer support couldn't use the

command line tool

• traces turned on for some number of
requests

• captured via multicast lwes and put into
database

• reports are generated

Wednesday, March 12, 14

Trace

Wednesday, March 12, 14

Lessons Learned

• Real time listening was useful for
debugging, but there were many hacked
together scripts to process trace
information, and the output was not
standardized so hard to parse

• Keeping around traces in a database for
some time was very useful, but a relational
database was limiting

Wednesday, March 12, 14

Display Advertising

• Given a location on a webpage

• Pick the best ad for the user and webpage

• Currently doing this with OpenX

Wednesday, March 12, 14

N Tier FTW!

Wednesday, March 12, 14

Use Cases

• Why is my ad not showing?

• Where did my request go?

• How do I test a change to a subsystem?

• How do I find replication issues?

Wednesday, March 12, 14

Tools
• lwes

• mondemand (http://www.mondemand.org/)

• added structured output of stats/logs/
traces on top of lwes

• mondemand-server

• collects traces as JSON objects

• simple UI for viewing

Wednesday, March 12, 14

Solution

• demarcate request with a cookie containing
two ids, an owner id and a trace id

• pass ids through to all services

• send trace messages to centralized server

• server captures and stores messages and
provides UI for viewing

Wednesday, March 12, 14

Mondemand

Wednesday, March 12, 14

Lessons Learned

• A single id is not enough, you need at least
2 and possibly more

• The tool is useful for everyone from
developers to QA to customer support

• Capture as much state as possible when
tracing, you'll need it someday

Wednesday, March 12, 14

Basic Examples

Wednesday, March 12, 14

Erlang

mondemand:send_trace (
 webserver, % identify program sending trace
 "trace_owner", % owner of trace
 "trace_id", % id for trace
 "received request", % message
 []) % extra data

Wednesday, March 12, 14

Java

// identify program sending trace
client = new Client ("webserver");

HashMap<String, String> tmp =
 new HashMap<String, String> ();

client.traceMessage (
 "trace_owner", // owner of trace
 "trace_id", // id for trace
 "received request", // message
 tmp); // extra data

Wednesday, March 12, 14

Command Line

mondemand-tool -o lwes::127.0.0.1:20502 \
 # identify program sending trace \
 -p webserver \
 # Owner of trace : id for trace : message \
 -T "trace_owner:trace_id:received request"

Wednesday, March 12, 14

Mondemand JSON

{
 "SenderIP": "127.0.0.1",
 "SenderPort": 52823,
 "ReceiptTime": 1392874916206,
 "EventName": "MonDemand::TraceMsg",
 "mondemand.src_host": "renym.local",
 "mondemand.prog_id": "webserver",
 "mondemand.owner": "trace_owner",
 "mondemand.trace_id": "trace_id",
 "mondemand.message": "received request"
}

Wednesday, March 12, 14

Examples with
Embedded JSON

Wednesday, March 12, 14

Erlang

mondemand:send_trace (
 webserver, % identify program sending trace
 "trace_owner", % owner of trace
 "trace_id", % id for trace
 "received request", % message
 [{ extra, % extra data can contain
 "{\"key\":\"value\"}" % json strings
 }
])

Wednesday, March 12, 14

Java
// identify program sending trace
client = new Client ("webserver");

HashMap<String, String> tmp =
 new HashMap<String, String> ();
tmp.put ("extra", // extra data can contain
 "{\"key\":\"value\"}" // json strings
);

client.traceMessage (
 "trace_owner", // owner of trace
 "trace_id", // id for trace
 "received request", // message
 tmp); // extra data

Wednesday, March 12, 14

Command Line

mondemand-tool -o lwes::127.0.0.1:20502 \
 # identify program sending trace \
 -p webserver \
 # Owner of trace : id for trace : message \
 -T "trace_owner:trace_id:received request" \
 # extra data can contain json strings
 -t "extra:{\"key\":\"value\"}"

Wednesday, March 12, 14

Mondemand JSON
{
 "SenderIP": "127.0.0.1",
 "SenderPort": 64613,
 "ReceiptTime": 1392875074968,
 "EventName": "MonDemand::TraceMsg",
 "mondemand.src_host": "renym.local",
 "mondemand.prog_id": "webserver",
 "mondemand.owner": "trace_owner",
 "mondemand.trace_id": "trace_id",
 "mondemand.message": "received request",
 "extra": { "key": "value" }
}

Wednesday, March 12, 14

Demo of UI

Wednesday, March 12, 14

Final Thoughts

• When building new systems

• add the ability to add ids to a request in
some ad hoc manner

• pass the ids throughout the system

• this lays the foundation for any number of
tracing setups

Wednesday, March 12, 14

Limitations/
Future Work

• Large objects in traces

• UDP packet limits trace sizes

• QueAsy system for feeding traces back into
a system as test cases

Wednesday, March 12, 14

Questions?

Wednesday, March 12, 14

Thanks!

• http://www.lwes.org/

• http://www.mondemand.org/

• http://github.com/djnym

• anthony.molinaro@openx.com

• anthonym@alumni.caltech.edu

Wednesday, March 12, 14

