
QuickCheck Evolution
John Hughes

Why is testing hard?

n
features O(n) test cases

3—4 tests per
featurepairs of features

O(n2) test cases

triples of features

O(n3) test cases

race conditions

Don’t write tests!

Generate them

QuickCheck

1999—invented by Koen Claessen and myself, for
Haskell

2006—Quviq founded marketing Erlang version

Many extensions

Finding deep bugs for Ericsson, Volvo Cars, Basho,
etc…

Example—binary trees

to_list(leaf) -> [];
to_list({node,L,X,R}) ->
to_list(L) ++ [X] ++ to_list(R).

member(_,leaf) ->
false;

member(X,{node,L,Y,R}) ->
if X==Y -> true;

X<Y -> member(X,R);
X>Y -> member(X,L)

end.

leaf {node,L,X,R} X

A property of member

prop_member() ->
?FORALL({X,T},{nat(),tree()},
member(X,T) == lists:member(X,to_list(T))).

For all X and T… …generated like this…

…the member
function behaves like

lists:member

Let’s run some tests…

But… what was that example
again?

• We may want to preserve examples that failed
before, as a regression suite

• In reality, a failing case may take a long time to
find… we don’t want to throw it away!

Enter… QuickCheck CI

DEMO

QuickCheck CI

• Builds a regression test suite automatically
• See progress in terms of tests which now pass
• Save rare tests which were hard to find

• Presents coverage information in depth
• See at a glance what has been tested
• See the effects of test case distribution
• Helps localize bugs!

State machine testing—example

• Let’s test the process registry
• register(Name,Pid)
• unregister(Name)
• spawn()—to create pids for test data

• What’s different now?
• These functions change the state of the registry

• Not looking for bugs!
• We’ll reverse engineer preconditions instead

State Machine Models

API
Calls

API
Calls

API
Calls

API
Calls

Model
state

Model
state

Model
state

Model
state

postconditions

State Machine Models

API
Calls

API
Calls

Model
state

Model
state

API
Calls

API
Calls

Model
state

Model
state

postconditions

Modelling the registry state

#state{
pids = […<0.32.0>…],
regs = [{a,<0.32.0>},…]

}

Added by spawn

Added by register,
removed by unregister

Specification of register

register_pre(S) ->
S#state.pids /= [].

register_args(S) ->
[name(),elements(S#state.pids)].

register(Name,Pid) ->
erlang:register(Name,Pid).

register_next(S,_,[Name,Pid]) ->
S#state{regs=S#state.regs++[{Name,Pid}]}.

DEMO

State machine models

• Conveniently specify the intended behaviour of
stateful systems

• QuickCheck CI reports a variety of interesting test
cases, and groups them sensibly

• Testing in practice involves
• Reverse engineering of specifications (yes, really!)
• Finding and correcting bugs in the code

Doing it
for real…

3,000 pages of specifications

20,000 lines of QuickCheck

1,000,000 LOC, 6 suppliers

200 problems

100 problems in the standard

10x shorter test code

Want to try it out?

• Go to https://github.com/hanssv/example_proj

quickcheck-ci.com

	QuickCheck Evolution
	Why is testing hard?
	Don’t write tests!
	QuickCheck
	Example—binary trees
	A property of member
	Let’s run some tests…
	Bildnummer 8
	But… what was that example again?
	Enter… QuickCheck CI
	QuickCheck CI
	State machine testing—example
	State Machine Models
	State Machine Models
	Modelling the registry state
	Specification of register
	DEMO
	State machine models
	Doing it for real…
	Bildnummer 20
	Want to try it out?
	Bildnummer 22
	Bildnummer 23
	Bildnummer 24
	quickcheck-ci.com

