
Do this

then do that

check

✓ Looks ok

<0.32.0> <0.35.0>

Testing...

then I do this

then I do that

and I check

✓ Looks ok too

Do this

check

✗ Not so ok

<0.32.0> <0.35.0>

Testing...

then do that

then I do this

then I do that

“reversed”

1. <0.32.0>

Testing...

2. <0.35.0>

3. <0.32.0>

4. <0.35.0>

5. <0.32.0>

6. <0.35.0>

7. <0.32.0> Exits normally

8. <0.35.0> Exits normally

3. <0.35.0>

4. <0.32.0>

5. <0.32.0>

6. <0.32.0> Crashes

Interleaving 1 Interleaving 2

?

Into Real Code

Stavros Aronis

Concuerror

● … is a tool for systematic testing

● … runs a test under all possible interleavings

● … detects abnormal process exits

● … reports all the events that lead to the crash

Efficient, easy to use
Optimal DPOR, automatic instrumentation,

and more...

Optimal Dynamic
Partial Order Reduction

Systematic =/= Stupid

● Literally “all interleavings”? Too many!

● Not all pairs of events are in a race

● Each interleaving should be different

Partial Order Reduction techniques

● … monitor dependencies between events

● … explore additional interleavings as needed

● … avoiding equivalent interleavings

● Dynamic: at runtime, using concrete data

1. -

4. -

2. -

3. write x

5. read x

6. -

7. read x

3. -

4. read x

5. write x

6. -

7. read x

5. -

6. read x

7. write x

4. -

5. read x

6. write x

7. read x

Interleaving 1 Interleaving 2 Interleaving 3 Interleaving 4

Why not “start” the interleaving here?

Answer: paper presented @ POPL’14!

3. -

Optimal DPOR vs “Classic” DPOR

● Unnecessary interleavings are not even started

● Classic DPOR: orders of magnitude better than
exhaustive

● Optimal DPOR: orders of magnitude better
than Classic DPOR :-)

POPL’14: Evaluation

Benchmark
Interleavings explored Time
Classic Optimal Classic Optimal

readers (2) 5 4 0.02s 0.02s
readers (8) 3281 256 13.98s 1.29s

readers (13) 797162 8192 86m7s 1m26s

lastzero (5) 241 64 1.08s 0.32s
lastzero (10) 53198 3328 4m47s 27.61s
lastzero (15) 9378091 147456 1539m 30m13s

Difference between Classic and Optimal

POPL’14: Evaluation

Benchmark
Interleavings explored Time

Classic Optimal Classic Optimal
dialyzer 12436 3600 14m46s 5m46s
gproc 14080 8104 3m3s 1m57s

poolboy 6018 2680 3m2s 1m20s

LOC: 44596 (dialyzer), 9446 (gproc), 79732 (poolboy)

Optimal DPOR: Summarry

● Not all pairs of events are racing!

● Concuerror will never even begin to explore
equivalent interleavings

● Trace analysis, intelligent algorithms, tailored
dependency tracking for Erlang built-ins

Automatic instrumentation

1. <0.32.0>

Testing...

2. <0.35.0>

3. <0.35.0>

4. <0.32.0>

5. <0.32.0>

6. <0.32.0> Crashes

3. <0.32.0>

4. <0.35.0>

5. <0.32.0>

6. <0.35.0>

7. <0.32.0> Exits normally

8. <0.35.0> Exits normally
Interleaving 1 Interleaving 2

Automatic instrumentation

Automatic instrumentation

Automatic instrumentation

● If you need fully instrumented code, do it
automatically!

● Not even +debug_info is required

● Instrumented erlang.erl?? Oh yes!

More...

More...

● Testing does not stop on the first crash

● All race-prone built-ins inspected

● Capturing stdout, stderr

● Detailed handling of exits and messaging

A process is exiting...

1. Status set to exiting

2. Name is unregistered

3. Timers are cancelled

4. ETS tables given away or destroyed

5. Link signals are sent

6. Monitor messages are sent

Concuerror follows the list step by step!

Under development...
Bounding, user interaction,

and exploration visualization

Bounding (--delay_bound, -b)

● Not all interleavings are equally probable

● Focus on those with “simpler” scheduling

● Classic DPOR supports Preemption Bounding

● Currently trying Delay Bounding

User interaction (Tips)

● Lots, lots, lots of racing events, e.g.
○ default timeouts for gen calls
○ exit signals

● Sometimes abnormal exits are acceptable
○ e.g. due to a supervisor’s shutdown signal

User guidance can greatly
increase efficiency when debugging

Lots, lots, lots of racing events

Example: erlang:register/2

Depends with:

● erlang:send/2
● erlang:unregister/1
● erlang:register/2
● erlang:whereis/1
● erlang:process_info/2
● Exit

Visualization (--graph)

Next Challenges

● System processes (e.g. application)

● Ports (and therefore file manipulation)

● Concuerror on Concuerror (on Concuerror...)

Conclusion
http://concuerror.com

Go give Concuerror a try!

● Efficient, systematic concurrency testing

● Usability and practicality are design goals

● Open source, feedback is appreciated

● concuerror --help

Thank you!

http://concuerror.com

