
Building a cloud with Erlang and 
SmartOS

How hard could it possibly be?



Spoiler



Spoiler

Quite hard!



Who am I

• Writing Project FiFo

• Twitter : @heinz_gies

• Github: https://github.com/Licenser & https://github.com/project-fifo

• IRC: Licenser

https://github.com/Licenser
https://github.com/project-fifo


Disclaimer
• This is time travel! Situations might have 

changed by today.
• This is about my experience not the total 

truth - yes there is a chance I was double 
wrong!

• I don’t want to shame any technology, it is just 
about my experience on applying them to a 
specific problem.

• No dogs were harmed in the making!



Intro

• What is FiFo? - Open Source Cloud orchestration

• For SmartOS: ZFS, DTrace, Crossbow, Zones, …

• In Erlang: Distributed, fault tolerant, fun to write, …



The fail of Clojure Script



What was done

• CLJS app in GZ

• HTTP API



Reason
• existing client for the API

• node.js was on the GZ (looked like additional deps).

• Wanted to try Clojure Script.

• No idea of what Project FiFo would become.



The problem
• lots of dependencies (version conflicts, missing libraries).

• at that time very hard to debug (no source maps etc., lack of 
visibility/horrible stack traces).

• Everything in the Global Zone. (big footprint)

• Only one system



What I learned

• Try to plan what you do before you do it.

• Rewriting is no shame!

• What seems easy in the beginning is not always the right thing.



The fail of a single host



What changed

• Added wiggle, API endpoint over multiple cljs application

• running in a zone

• Allow more then 1 hypervisor!



Reason

• Needed good abstract over the existing code.

• A web interface for the clojurescript code.

• Wanted to work with Erlang.



The problem
• HTTP between wiggle and cljs-app.
• Single point of failure.

• Did not simplify the code on the hypervisor, it just forwarded.
• Still not enough separation.
• Authentication handled downstream in cljs.

• Synchronization is a pain.



What I learned
• HTTP is not the silver bullet.
• Split out applications.
• Modularize (not only in code, but in applications).
• Handle things like authentication as high up as possible.
• Remove work from leaves that should be handled in a different 

layer.



The fail of distribution



What changed

• Split out authentication -> snarl

• Split out most logic -> sniffle

• Reduced GZ footprint -> scrap cljs replace by minimal erlang 
app



Reason
• Erlang apps are wonderfully self-contained (releases)
• Distributing systems protects against SPOF
• Separating concerns

• management on system 
• authentication
• API
• Management of hypervisors



Problem
• Synchronization is really hard

• 1st try: gproc had problems with multiple nodes[1]

• 2nd try: wrapper around grpoc -> had a SPOF

• lots of configuration needed with connecting all the systems



What I learned
• distributed systems are hard, who would have thought that!

• managing configuration is annoying, especially in a multi-node 
environment.

• in Erlang land there are great libraries for distribution.

• riak_core rocks!



The fail of storing JSON



Reason

• It’s “easy”, no schema, good library support for serializing and 
deserializing

• The fronted/UI used it anyway

• everyone uses JSON, so it must be good right?



Problem
• Choice based on popularity not common sense
• No Pattern matching
• No good libraries to manipulating JSX-JSON
• Verbose and ‘big’
• hard to represent data in Erlang (esp. maps/objects)
• Hard to synchronize/merge (state box[2] is only a partial solution)



What I learned

• Model data around the backend not the front-end
• JSON is no silver bullet, it has the same problem XML had, it is 

used for the sake of being used
• CRDT’s are a lovely thing[4]

• Records are not perfect but a very nice storage for structured 
information



The fail of CAP



Reason

• riak_core really rocks!

• Eventual consistency is a very tempting concept

• Availability is more important then consistency when managing a 
cloud



Problem

• Expect when it is not, like IP assignment, memory constraints on 
server :(

• Globally locking those things would break availability

• Not beating CAP anytime soon [3] :(



What I learned

• The more control you have over your data the further you can push the 
‘eventual’ in eventual consistency

• Locks don’t have to be global need to just cover enough to ensure consistency

• The locks location matters:

• Hypervisor memory on the hypervisor itself

• IP’s ‘sharded’ over the ring



Links
• https://project-fifo.net 

• https://docs.project-fifo.net

• [1] http://christophermeiklejohn.com/erlang/2013/06/05/erlang-gproc-failure-
semantics.html

• [2] https://github.com/mochi/statebox

• [3] http://ferd.ca/beating-the-cap-theorem-checklist.html

• [4] http://aphyr.com/posts/285-call-me-maybe-riak

https://project-fifo.net
https://docs.project-fifo.net
http://christophermeiklejohn.com/erlang/2013/06/05/erlang-gproc-failure-semantics.html
https://github.com/mochi/statebox
http://ferd.ca/beating-the-cap-theorem-checklist.html
http://aphyr.com/posts/285-call-me-maybe-riak

