Building a cloud with Erlang ana
SMartOS

How hard could it possibly be?

Spoiler

Spoiler

Quite hard!

VWho am |

B itne Project Fiko

Sl iter @nheinz_gies

» Github: https://github.com/Licenser & https://github.com/project-fifo

« |IRC: Licenser

https://github.com/Licenser
https://github.com/project-fifo

Disclaimer

* This Is time travell Situations might have
changed by today.

SIS B oUL My experience not the total
truth - yes there is a chance | was double
wrong!

* | don't want to shame any technology, it Is just
about my experience on applying them to a
specific problem.

* No dogs were harmed in the making!

INtro

B esRiFor - Open Source Cloud orchestration
B AR tO5: 255, Dlrace, Crossbow, Zonesy ..

RIENERaneT Distributed, fault tolerant, fun to write, ..

The fall of Clojure Script

VWhat was done

BelNs o op In G/

R A

Reason

B deiinieclient Tor the AP
* node.Js was on the GZ (looked like additional deps).
B idic try Clojure Script.

* No idea of what Project FiFo would become.

[he problem

» lots of dependencies (version conflicts, missing libraries).

» at that time very hard to debug (no source maps etc., lack of
visibility/horrible stack traces).

* Everything in the Global Zone. (big footprint)

* Only one system

VWhat | learned

» [ry to plan what you do before you do It.
* Rewriting Is no shamel

* What seems easy In the beginning is not always the right thing.

The fall of a single host

VWhat changed

- Added wiggle, APl endpoint over multiple cljs application
* runnINg IN a zone

» Allow more then | hypervisor!

Reason

BN EEGEEl cood apstract over the existing code.
A web interface for the clojurescript code.

* Wanted to work with Erlang.

[he problem

* HT TP between wiggle and cljs-app.
B licie point of fallure.

. Did not simplify the code on the hypervisor, it just forwarded.

- Still not enough separation.

» Authentication handled downstream In cljs.

* Synchronization Is a pain.

VWhat | learned

BERRERSTron the siiver bullet,
» Split out applications.

» Modularize (not only Iin code, but in applications).

 Handle things like authentication as high up as

possible.

« Remove work from leaves that should be hanc
layer.

led In a different

The fall of distribution

VWhat changed

» Split out authentication -> snarl
* Split out most logic -> sniftle

* Reduced GZ footprint -> scrap cljs replace by minimal erlang
dpp

Reason

* Erlang apps are wonderfully self-contained (releases)
» Distributing systems protects against SPOF

» Separating concerns

RiERdeement on system

» authentication

AR

* Management of hypervisors

Proplem

* Synchronization is really hard
» | st try: gproc had problems with multiple nodes:;
» 2nd try: wrapper around grpoc -> had a SPOF

* lots of configuration needed with connecting all the systems

VWhat | learned

- distributed systems are hard, who would have thought that

* managing configuration Is annoying, especially in a multi-node
environment.

* In Erlang land there are great libraries for distribution.

* rlak_core rocks!

The fall of storing [SON

n Ly

.

"dataset”: "4bb6c9cle-ab43-11e3-bbaf-0799fb@203af",
"description”: "Graphite Instance with Carbon Cache and Webinterface”,
"image_size": 0,
"imported”: 1,
"name": "graphite”,
"networks”: [
{
"description”: "public”,
"name"”: "net@"

"status": "imported",
"type": "zone",
"users": [
{
“name” :
}’
{

root

1) \.ﬁ" =

M‘“ "version”: "13.2.1"

Reason

* It's “easy’’, no schema, good library support for serializing and
deserializing

* The fronted/Ul used it anyway

» everyone uses |[SON, so it must be good right!

Proplem

» Choice based on popularity not common sense

* No Pattern matching

* No good libraries to manipulating JSX-JSON

* Verbose and ‘big’

* hard to represent data in Erlang (esp. maps/objects)

* Hard to synchronize/merge (state boxp Is only a partial solution)

VWhat | learned

« Model data around the backend not the front-end

B WNRCRE silver bullet, It has the same problen AXMIE R E RIS
used for the sake of being used

* CRDT's are a lovely things

B —@olidls dre not perfect but a very nice storage for sirtetiiEa
information

The faill of CAP

Reason

* riak_core really rocks!
* Eventual consistency Is a very tempting concept

» Avallability 1s more important then consistency when managing a
cloud

Proplem

* Expect when 1t 1s not, like [P assignment, memory constraints on
servElad

» Globally locking those things would break availability

* Not beating CAP anytime soon g i(

VWhat | learned

Siciiekc control you have over your data the further you canipusHseme
‘eventual In eventual consistency

» Locks don't have to be global need to just cover enough to ensure consistency
» [he locks location matters:

* Hypervisor memory on the hypervisor itself

* |[P's 'sharded over the ring

Links

» https://project-fifo.net

» https://docs.project-fifo.net

» [I] http://christophermeiklejohn.com/erlang/20 | 3/06/05/erlang-gproc-failure-
semantics.html

» [2] https://github.com/mochi/statebox

» [3] http://ferd.ca/beating-the-cap-theorem-checklist.ntml|

» [4] http://aphyr.com/posts/285-call-me-maybe-riak

https://project-fifo.net
https://docs.project-fifo.net
http://christophermeiklejohn.com/erlang/2013/06/05/erlang-gproc-failure-semantics.html
https://github.com/mochi/statebox
http://ferd.ca/beating-the-cap-theorem-checklist.html
http://aphyr.com/posts/285-call-me-maybe-riak

