
© - Informatix Solutions, 2014 Page 1 Version 1.0

Informatix

Solutions

GO BIG
 - SCALING ERLANG

Richard Croucher

© - Informatix Solutions, 2014 Page 2 Version 1.0

Informatix

Solutions
Background and Biases – Richard Croucher

• Platform architect
• Chief Architect at Sun Microsystems where I helped create the dotcom

deployment standard and designed and deployed a 1024 server cluster

• Principle DevOPs Architect at Microsoft for all its Internet properties . Adding
4000 servers a month. Established the dynamic computing working group to
create design patterns for Cloud computing

• Primary focus over the last decade has been High Frequency Trading systems
for Banks - pushing technology to extremes

• Involved with several Cloud startups

• Code in multiple languages
• Transitioned through Assembler, Pascal, C, C++, Java , C# and Erlang

• Love new technology and finding novel ways to use existing technologies

• Degrees in Physics, Electronics and Materials Science

• Elected Fellow of the British Computer Society and Fellow of STAC Research

• See www.informatix-sol.com

© - Informatix Solutions, 2014 Page 3 Version 1.0

Informatix

Solutions
My Erlang journey

Wow!
Erlang is

great

© - Informatix Solutions, 2014 Page 4 Version 1.0

Informatix

Solutions
My Erlang journey

Wow!
Erlang is

great

OTP has
all I

need

© - Informatix Solutions, 2014 Page 5 Version 1.0

Informatix

Solutions
My Erlang journey

Wow!
Erlang is

great

OOM

Limited atoms

Slow maths

chatty

c("tcp-test").
tcp-test.erl:4: bad module declaration

Where’s ‘while’ OTP has
all I

need

Immutable variables take some getting used to

OTP is so hard

© - Informatix Solutions, 2014 Page 6 Version 1.0

Informatix

Solutions
My Erlang journey

Wow!
Erlang is

great

OOM

Limited atoms

Slow maths

chatty

c("tcp-test").
tcp-test.erl:4: bad module declaration

Where’s ‘while’ OTP has
all I

need

Immutable variables take some getting used to

OTP is so hard

© - Informatix Solutions, 2014 Page 7 Version 1.0

Informatix

Solutions
My Erlang journey

Wow!
Erlang is

great

OOM

Limited atoms

Slow maths

chatty

c("tcp-test").
tcp-test.erl:4: bad module declaration

Where’s ‘while’ OTP has
all I

need

Immutable variables take some getting used to

OTP is so hard

© - Informatix Solutions, 2014 Page 8 Version 1.0

Informatix

Solutions
Big Clusters to Big Data

• Single computers that fill a
room

• Continual race to build the
biggest - www.top500.org

• Solving big science
challenges
• global warming, weather

forecasting, Higgs Boson,
nuclear simulations, web
Search

• 3 generations of Grid
computing:
1. Distributed Resource

Managers

2. MPI

3. MapReduce

Blue Gene computer, Lawrence Livermore Laboratories USA

http://www.top500.org/

© - Informatix Solutions, 2014 Page 9 Version 1.0

Informatix

Solutions
Big Clusters to Big Data

• Single computers that fill a
room

• Continual race to build the
biggest - www.top500.org

• Solving big science
challenges
• global warming, weather

forecasting, Higgs Boson,
nuclear simulations, web
Search

• 3 generations of Grid
computing:
1. Distributed Resource

Managers

2. MPI

3. MapReduce

Original focus on pure compute but as
datasets (TB-PB) grew emphasis changed
to moving data to the compute elements.
The methods uses to accomplish this are
loosely referred to as ‘Big Data’

Blue Gene computer, Lawrence Livermore Laboratories USA

http://www.top500.org/

© - Informatix Solutions, 2014 Page 10 Version 1.0

Informatix

Solutions
Grid Computing to Big Data

Distributed
Resource
Managers

MPI Grids

Vector Grids

Original ‘Grid’ Clusters
Loosely coupled

First real API
Tighter coupling

Hadoop

MapReduce
‘Big Data’

Cuda
OpenCL
Intel Phi

Dissatisfaction with cost and performance of big SMP servers

© - Informatix Solutions, 2014 Page 11 Version 1.0

Informatix

Solutions
Gen1 - Grid Computing – Distributed Resource Managers

•Jobs are submitted and then queued to start on the required number of matching
servers, each with their own execd
•Jobs are essentially scripts with some manual partitioning of the data set
•Typically used NFS to share data between nodes
•Examples - Condor, Sun Grid Engine, Platform, TIBCO Datasynapse ...

© - Informatix Solutions, 2014 Page 12 Version 1.0

Informatix

Solutions
Gen2 - Grid Computing - MPI

• Message Passing Interface (MPI) standard

• Grid API in ‘C’ and Fortran

• Several implementations - MPICH-G2, GridMPI, LAM-MPI

• Supports both synchronous and asynchronous messaging between nodes
in a grid cluster

• Enables individual jobs to share data, rendezvous

• Supports multicast for efficient internode broadcasting

• Uses Cluster files systems such as Lustre, GPFS, Pananas to provide high
performance access to shared data

• Top500 rating is via Linpack benchmark – Fortran benchmark, massive
array manipulation

© - Informatix Solutions, 2014 Page 13 Version 1.0

Informatix

Solutions
Gen2 – MPI latency sensitivity

Sensitivity of MPI performance to network latency led to tuning and
optimization of the network

Chart courtesy of gridmpi.org

© - Informatix Solutions, 2014 Page 14 Version 1.0

Informatix

Solutions
Improving parallel compute with GPUs and SIMD

• Single Instruction Multiple Data are a type of computer specifically
designed for parallel computing

• Same program executes in parallel across different slices of the dataset

• Used in GPU’s since visualization suits SIMD architectures

• Provide access to large numbers of floating point units so good for vector
intensive workloads

• GPU consumerization drove down prices resulting in people adding cards
and using graphics primitives to program them

• Nvidia commercialised their GPU’s into ‘Physics’ processors and defined a
generalized API - CUDA – ‘C’ API

• ATI/AMD followed suite with their own GPU’s and programming languages

• Industry standardization followed with OpenCL

• Intel launched ‘many cores’, aka ‘Phi’ which provides 64 PentiumP4 cores
+ additional vector registers per chip

© - Informatix Solutions, 2014 Page 15 Version 1.0

Informatix

Solutions
CUDA Server

• 2U server with 4x Tesla
Nvidia cards + 2x Intel x86

• 4 off Tesla’s each with :
• 512 cores

• 665 Gigaflops double
precision

• 1331 gigaflops single
precision

• 177 GB/sec memory B/W

• 2 off x86 CPUs with:
• 20 cores

• 256GB memory

Total 2068 cores per 2U server,
or 41K cores per rack

Need to match CPU:GPU ratio to application profile

© - Informatix Solutions, 2014 Page 16 Version 1.0

Informatix

Solutions
CUDA program flow

1. Copy input data from CPU

memory to SIMD memory

2. Load program code onto

SIMD. Note: same code

executes on each thread

3. Start program execution

and wait until finished

4. Copy results back from

SIMD and merge results

© - Informatix Solutions, 2014 Page 17 Version 1.0

Informatix

Solutions
Top 10 Biggest Computers www.top500.org

© - Informatix Solutions, 2014 Page 18 Version 1.0

Informatix

Solutions
Worlds largest compute cluster (Nov 2013)

• Tianhe-2 (MilkyWay2)

• National Super
Computer Center
Guangzhou

• Intel E5-2692 + Xeon Phi

• Total 3,120,000 cores

• 33,863 Tflops Rmax

© - Informatix Solutions, 2014 Page 19 Version 1.0

Informatix

Solutions
Designing large clusters

• Most Users want to achieve the highest compute power for a
given budget and/or MWatts

• Design the software to cope with failure
• Avoid any Single Points of Failure (SPOFS)

• Once the software can survive individual failures, then
cheaper commodity servers can be used
• e.g 98% of 1500 servers, is better than 99.9% of 1000 servers

• Once there are too many servers to plug into a single network
switch, the network design becomes critical
• Achieving Bandwidth and latency at scale is the challenge

• 1500 servers on a high b/w, low latency network will typically
outperform 2500 servers on a slower network

© - Informatix Solutions, 2014 Page 20 Version 1.0

Informatix

Solutions
Grid Computing Applications

• Financial Services

• Options pricing

• Market valuations

• Value at Risk - Monte Carlo

• Oil and Gas

• Seismic analysis

• Media

• Rendering and visualization

• Engineering

• 3D design and modelling

• Crash test

•Health and Pharma

• DNA
• Molecular modelling

•Big Science

• Large Haydron Collider (LHC) results
analysis

• Satellite imaging
• Weather forecasting
• Global warming
• Nuclear simulation

© - Informatix Solutions, 2014 Page 21 Version 1.0

Informatix

Solutions
MapReduce

Popularized in a paper published by Google.

http://research.google.com/archive/mapreduce.html

http://research.google.com/archive/mapreduce.html

© - Informatix Solutions, 2014 Page 22 Version 1.0

Informatix

Solutions
MapReduce algo

• The Map and Reduce functions of MapReduce are both defined with
respect to data structured in (key, value) pairs. Map takes one pair of data
with a type in one data domain, and returns a list of pairs in a different
domain:

 Map(k1,v1) -> list(k2,v2)

• The Map function is applied in parallel to every item in the input dataset.
This produces a list of (k2,v2) pairs for each call. After that, the
MapReduce framework collects all pairs with the same key from all lists
and groups them together, thus creating one group for each one of the
different generated keys.

• The Reduce function is then applied in parallel to each group, which in
turn produces a collection of values in the same domain:

 Reduce(k2, list (v2)) -> list(v3)

• Each Reduce call typically produces either one value v3 or an empty
return, though one call is allowed to return more than one value. The
returns of all calls are collected as the desired result list.

© - Informatix Solutions, 2014 Page 23 Version 1.0

Informatix

Solutions
Hadoop - a brief history

• Doug Cutting, then Search Director at the Internet Archive and Mike Cafaella had
built their own Search indexer called Nutch in 2002-2004. This could crawl hundreds
of million of web sites but needed a lot of hand holding and raised concerns as to
whether it could scale.

• When Google published its papers on Google File system (Oct 2003) and later with
MapReduce (Dec 2004). Doug released this was a better approach . They
implemented these in Java and added Nutch on top.

• In 2006, Doug Cutting joined Yahoo. They’d also been impressed by Google’s papers.
They spun out the storage and processing components Doug had been working on to
create the open source Apache Hadoop project, keeping Nutch as an internal project.

• The initial code only scaled to 20 servers, but Yahoo committed heavy resources and
eventually scaled it to the thousands of servers necessary to run their web indexing

• Yahoo created a research grid internally and the data scientists using it discovered
they could use it for analytics - this is the principle use case Hadoop is used for today.

• In 2011 Yahoo’s Hadoop environment was reported to be 42,000 nodes and hundreds
of Peta bytes of data.

• Facebook are probably the largest Hadoop user now, in 2012 it was reported to be
100PB, growing at ½ PB per day

• Google don’t use Hadoop, their MapReduce implementation is written in C++

© - Informatix Solutions, 2014 Page 24 Version 1.0

Informatix

Solutions
Hadoop - really an ecosystem

Courtesy of Bala Sundaram at http://futureanalytics.blogspot.co.uk/

© - Informatix Solutions, 2014 Page 25 Version 1.0

Informatix

Solutions
Hadoop evolution

• Hadoop itself only provides basic get/set/scan primitives. Add on Query Engines
are used to supplement this

• Hive - original Apache project implementation for Hadoop, SQL like

• Facebook Presto – recently Open Sourced, ANSI-SQL, suitable for interactive
queries

• Cloudera Impala Query language

• Dremel – Open source implementation of Google BigQuery API

• Many Hadoop clones which are compliant with the same set of APIs - Cloudera
and other adding value to the original code such as IBM and Intel

• Derivative projects such as Apache Shark aim to optimize for interactive User cases

© - Informatix Solutions, 2014 Page 26 Version 1.0

Informatix

Solutions
Grid Computing specialization

Distributed
Resource
Managers

MPI Grids

SIMD Grids

Hadoop

‘Big Data’
analytics

Matrix calculations
Vector intensive
workloads

© - Informatix Solutions, 2014 Page 27 Version 1.0

Informatix

Solutions
Grid Computing specialization – missing piece

Distributed
Resource
Managers

MPI Grids

SIMD Grids

Hadoop

‘Big Data’
analytics

Matrix calculations
Number crunching

Distributed Applications?

Cloud scalability?

How to build the next
Facebook?

© - Informatix Solutions, 2014 Page 28 Version 1.0

Informatix

Solutions
Grid Computing specialization – missing piece

Distributed
Resource
Managers

MPI Grids

SIMD Grids

Hadoop

‘Big Data’
analytics

Matrix calculations
Number crunching

© - Informatix Solutions, 2014 Page 29 Version 1.0

Informatix

Solutions
Erlang for distributed computing

• Scalability, particularly concurrency is too hard with imperative programming
languages, - functional programs are a better fit

• Erlang designed for concurrency
• Immutable variables

• Always (mostly) pass by copy

• Asynchronous messaging

• Execute a function on a remote node - spawn(Node, Module, Fun, [Args])

• Easy to create clusters
• erl -sname hostname -setcookie mysecret

• Now tell everyone I’m here - net_adm:ping(some_other_node).

© - Informatix Solutions, 2014 Page 30 Version 1.0

Informatix

Solutions
Open Telecom Platform (OTP) makes Erlang production capable

• OTP provides many required services and generalised supervisor patterns which
support the Erlang principle of crash early, automatically restart

• Includes standard behaviours
• gen_server

• start_link(ServerName, Module, Args, Options)

• gen_fsm

• Finite State machine

• gen_event

• Event machine

• Supported by other components such as Mnesia

• Distributed, database, on disk and/or in memory

• Includes Release control, Edoc, live updates, profiling, code inspectors etc.

© - Informatix Solutions, 2014 Page 31 Version 1.0

Informatix

Solutions
Erlang suitability for Cloud scale and distributed computing

But..

• Erlang cluster scalability limited due to chattiness, even with hidden nodes

• OTP designed for the specialised compute environment of telephone switches,
documented as being limited to 50-100 nodes

• OTP supervision trees are designed to work on local nodes

• A supervisor is recommended to only supervise local processes due to concern about the
reliability of the network

• OTP Distributed Application controller - dist_ac

• distributed = [{Application, [Timeout,] NodeDesc}]

• Where NodeDesc is a list of Nodes this application may execute on, in priority order

• For this to work, first the nodes must contact each other

• sync_nodes_mandatory = [Node] - all these nodes must be running

• sync_nodes_optional = [Node] - this nodes may be running

• Design goal is to keep the application running (on one node) in an environment where its
assigned node(s) may fail - does not provide scalability, or even load balancing

• gen_server_cluster (Erlang Central)

• enables multiple servers to provide a single service, each running on a different erlang node.
Implementation it to have one active server out of the cluster, sharing state to the others to
they can elect a new leader if it goes down. Implementation does not provide scalability

.. Surely somebody has solved this?

http://erlangcentral.org/wiki/index.php?title=A_Framework_for_Clustering_Generic_Server_Instances

© - Informatix Solutions, 2014 Page 32 Version 1.0

Informatix

Solutions
Other possibilities checked out

• Computerl - pipeline based compute scheduling.
• Used initially to automate CT

• No commits in last 3 years.

• Unable to get response from Michal Ptaszek at his published
email address

• Nodefinder
• Uses multicast to discover other nodes in the cluster.

• Separate version available to use on AWS

© - Informatix Solutions, 2014 Page 33 Version 1.0

Informatix

Solutions
Other possibilities checked out

• Disco project see http://disco.readthedocs.org/en/latest/intro.html

• MapReduce implementation written in Erlang

• Reference implementation is a 800 core cluster at Nokia
Research centre in Palo Alto

• New nodes can be added to a running cluster and jobs on failed
nodes will be restarted elsewhere

• HTTP REST API allows jobs to be submitted in many languages -
Python seems the most common

• Integrated cluster file system – Disco Distributed Filesystem
(DDFS). Horizontally scalable. Designed for large stores. Blob
storage defaulting to 3 replica’s

• Dependency on Python to run

http://disco.readthedocs.org/en/latest/intro.html

© - Informatix Solutions, 2014 Page 34 Version 1.0

Informatix

Solutions
Other possibilities checked out

• Riak_core
• A proven component used in Riak noSQL and separately

available

• Node watcher to manage cluster membership, includes API to
advertise and discover specific services. Enables adding and
removing nodes

• Master/worker pattern using vnodes as workers.

• Stores cluster global state in the (Dynamo) ring by ‘gossiping’

• Which node to use depends on hashing within request ala
Dynamo, filters out down nodes, relies in ability of any node to
service request

• Can be used generically but does have a strong Riak bias

© - Informatix Solutions, 2014 Page 35 Version 1.0

Informatix

Solutions
Scalable Distributed (SD) Erlang

• A EU funded program with collaborators including Uppsala University, Herriot
Watt University, University of Kent, Erlang Solutions, Ericsson, University of
Glasgow, EDF

• Goal is to evolve Erlang to run on 100K core environments

• Carrying out projects to improve scalability of the Erlang VM, defined a distributed
component Ontology, prototyped a cloud deployment tool (Wombat)

• Current (May 2014) software available:

• benchErl - benchmarking tool, Dialyzer, Percept2, ErLLVM

White papers talk about:

• s_groups will allow partitioning of a cluster and reduce chatter.

• Semi-explicit placement, replacing the default round-robin placement, placement hints
to encourage deployment in same node for example.

• load management - plan of offer a load server, will collect load information and decide
where to spawn a new process. Will have one load server per node, chose_node
function

Release

http://erlangcentral.org/frame/?href=http://www.release-project.eu/

© - Informatix Solutions, 2014 Page 36 Version 1.0

Informatix

Solutions
Conclusion

• Erlang/OTP together help you solve the most difficult part of creating
massively scalable applications – writing scalable code which can run
reliably

• Lots of good tech that can be leveraged but still a development to be done

• Longer term – RELEASE will help enormously but don’t think we can wait
that long

• Lots going on outside the Erlang community that could also be leveraged
e.g.

• RDMA to overcome the TCP/IP bottleneck

• Multicast to reduce chatiness

• It’s possible to write the next ‘Facebook’ in Erlang/OTP and there are lots
of people all working independently to achieve cloud scale

• Real opportunity is for Erlang/OTP to take the lead as the premier Cloud
platform
• harnessing all these separate activities

• leveraging lessons learnt elsewhere building massive scale

Richard.Croucher@informatix-sol.com www.informatix-sol.com

mailto:Richard.Croucher@informatix-sol.com
mailto:Richard.Croucher@informatix-sol.com
mailto:Richard.Croucher@informatix-sol.com

© - Informatix Solutions, 2014 Page 37 Version 1.0

Informatix

Solutions

SPARE SLIDES

© - Informatix Solutions, 2014 Page 38 Version 1.0

Informatix

Solutions
Big Cluster network Example

