
Benoit Chesneau @benoitc

Erlang User Conference - 2014-06-09

enkidb!
an alternative to mnesia

why using Erlang 	

to build a database?

Database challenges

• Collecting and organising data so they can be
retrieved

• Concurrency

• ACID transactions

ACID,

‣ Atomicity
‣ Consistency
‣ Isolation
‣ Durability

Atomicity

• each transaction is "all or nothing".

• if one fail, the database stay unchanged

• Erlang: let it crash & fault tolerance

• processes fail fast

Consistency

• take the database from one valid state to another.

• Erlang supervision helps to maintain a consistent
system

• process recovery

Isolation

• seriability: concurrent transactions result in the
same system state as if they were executed
serially.

• Erlang: transactions processes are isolated from
others

• process messages queue

• no shared memory

• independent recovery

Durability

• Once a transaction has been committed, it has
been recorded in durable storage

• Erlang reliability helps to maintain the durability.

a need for a specific 	

database…

camp.io

Easily coordinate multiple data sources coming
from devices, peoples or services around the
world through a decentralised data platform .1

1 using the open source refuge solution: http://refuge.io

http://refuge.io

The Burning of the Library at Alexandria in 391 AD

copyists

camp.io

• take the control of your data back

• decentralizing data

• replicas and snapshots around the world

queries should be decentralized

• replicate snapshots data in difference parts of the
world, offices or devices

• queries happen on snapshots

• sometimes offline

• or disconnected from the primary source

• and can be disconnected from other sources.

writes happen independently of reads

• writes can be centralised

• … or replicated

• without interactions with other nodes.

• over the net using HTTP(s) or not.

• support transactional writes

mnesia partly 	

fit the bill

mnesia, partly fit the bill

• replication

• Location transparency.

• diskless nodes

• transactions support with realtime capabilities
(locks selection)

but

• replication works only between connected Erlang
nodes

• no offline capabilities

• transactions imply dialog between different nodes
where there is a replica (write lock)

facts and  
a bit of history…

we started by… using couchdb vs mnesia

• limit of a database > 2 GB

• master-master replication

• no nodes connections needed: P2P

• View indexation

• Modern storage

refuge.io project

2011

couchdb hack

2012

rcouch

03/2014

opencouch enki

06/2014

The time we have lost

hack apache couchdb. make it OTPish

• rcouch (http://github.com/rcouch)

• major refactoring to create an Erlang CouchDB
releases

• some patches and new features

• the view changes

• WIP: merge back in Apache CouchDB

http://github.com/rcouch

opencouch - the diet cure…

• rcouch was too complicated to embed

• in a need of a simpler API to add new features

• need to able to use different transports

• need something without all the extra

• https://github.com/benoitc/opencouch

https://github.com/benoitc/opencouch

enki	

one step further…

enki design

• document oriented database

• blob support

• 3 components

• Peers

• Updaters

• Storage services

enki design

application
Peers

Updater

transactions
& changes notifications

write

storage service

read and replicate snapshots

replicate

peers

• Erlang library embedded in Erlang applications

• send transactions to the updaters

• query the storage services

• edit locally (offline or not)

• replication between peers

• discovery of updaters and peers handled at the
application level

peers

• can replicate from Apache CouchDB

• a REST server exists

replication

• couchdb uses a revision tree

• tested other solutions:

• dotted version clock: 
https://github.com/ricardobcl/Dotted-Version-
Vectors

• interval tree clocks:  
https://github.com/ricardobcl/Interval-Tree-Clocks

• settled to a revision tree with minor adjustments

https://github.com/ricardobcl/Dotted-Version-Vectors
https://github.com/ricardobcl/Interval-Tree-Clocks

enki revision tree

• add concurrent edit concept (also defined by
damien katz)

• multi-backend support

updater

• only manage the transactions

• can manage conflicts via stored functions or
transaction functions

• accept connections over different transport and
using Erlang RPC.

• more complicated than a gen_server but not so
much.

how a document is stored in couchdb?

• 2 indexes: by ID, by seq,

• transaction happen at document level.

• the value is the revision tree. There is one revision
tree / document.

• Each revisions are stored as immutable chunks in
the database file, only reference are passed to the
revision tree.

storage

• key-value interface and CAS for updating

• revision tree is stored as a value associated to the
document key

• revisions are stored as immutables values

• can be remote (amazon dynamodb, postgres,
riak..) or local (leveldb, cowdb)

• use transaction capabilities of the storage if
existing

cowdb : local storage engine

• based on the Apache CouchDB btree

• pure Erlang append only btree

• Handle transactions

• provide an easy api to store objects

the couchdb btreee

• copy-on-write (COW)

• append-only

• can store multiple btrees

• but use a lot of space (need to compact)

cbt: first attempt to extract it

• https://bitbucket.org/refugeio/cbt

• low level.

• wasn’t really usable by the end-developer

• wanted to provide a simple way to handle it.

https://bitbucket.org/refugeio/cbt

1. create a database and initialize a btree  
 
 

2. initialize the btree  
 
 

3. read a value

1> {ok, Fd} = cbt_file:open("test.db"). !
{ok,<0.35.0>}!
2> {ok, Btree} = cbt_btree:new(Fd).!
{ok,{btree,<0.35.0>,nil,undefined,undefined,undefined,nil,!
 snappy,1279}}

3> {ok, Btree2} = cbt_btree:add(Btree, [{a, 1}]).	
{ok,{btree,<0.35.0>,	
 {0,[],32},	

 undefined,undefined,undefined,nil,snappy,1279}}

4> Root = cbt_btree:get_state(Btree2).	
{0,[],32}	
5> Header = {1, Root}.	
{1,{0,[],32}}	
6> cbt_file:write_header(Fd, Header).

1. read the header  
 
 

2. initialize the btree  
 
 
 
 

3. read a value

1> {ok, Fd} = cbt_file:open("test.db"). 	
{ok,<0.44.0>}	
2> {ok, Header} = cbt_file:read_header(Fd).	
{ok,{1,{0,[],32}}}

12> cbt_btree:lookup(SnapshotBtree, [a]).	
[{ok,{a,1}}]

10> {_, Root} = Header. 	
{1,{0,[],32}}	
11> {ok, SnapshotBtree} = cbt_btree:open(Root, Fd).	
{ok,{btree,<0.44.0>,	
 {0,[],32},	
 undefined,undefined,undefined,nil,snappy, 1279}}

useful but not for  
the end developer.

cowdb another object database

• https://bitbucket.org/refugeio/cowdb

• wrapper around the couchdb btree

• doesn’t depends on cbt (but should be probably)

https://bitbucket.org/refugeio/cowdb

initialize a database

1> {ok, Pid} = cowdb:open("testing.db",	

1> fun(St, Db) -> cowdb:open_store(Db, "test") end	

!>).	

{ok,<0.35.0>}

initialize a store

simple transaction

2> cowdb:lookup(Pid, "test", [a,b]).	

[{ok,{a,1}},{ok,{b,2}}]	

3> cowdb:transact(Pid, [{remove, "test", b}, {add, "test", {c,	

 3}}]).	

ok	

4> cowdb:lookup(Pid, "test", [a,b,c]).	

[{ok,{a,1}},not_found,{ok,{c,3}}]	

5> cowdb:get(Pid, "test", a).	

{ok,{a,1}}

transaction functions

7> cowdb:transact(Pid, [

 {fn, fun(Db) -> [{add, "test", {d, 2}}] end}	

]).	

ok	

8> cowdb:lookup(Pid, "test", [d]).	

[{ok,{d,2}}]

transaction function

opensourcing Enki

Enki will be released under an opensource
license. Paying support will be available.

?
@benoitc

Refuge.io

