Erlang User Conference - 2014-06-09

Benoit Chesneau @benoitc

enkidb
an alternative 1o

"

J

y
e
. o

camp.io

e“l
1
-

N\

il

——

W

mnesia

W\

o

—
P i 2

why using Erlang
to build a database?

Database challenges

» Collecting and organising data so they can be
retrieved

e Concurrency

« ACID transactions

ACID

» Atoml
NSl
atl

» Co
» Iso
» Du

City
stency
on

rability

Atomicity

* ecach transaction is "all or nothing".
* |f one fail, the database stay unchanged
* Erlang: let it crash & fault tolerance

* processes fail fast

Consistency

e take the database from one valid state to another.

* Erlang supervision helps to maintain a consistent
system

* Drocess recovery

Isolation

e seriability: concurrent transactions result in the
same system state as If they were executed
serially.

e Erlang: transactions processes are isolated from
others

* Drocess messages gqueue
* NO shared memory

* Independent recovery

Durability

 Once a transaction has been committed, it has
been recorded In durable storage

* Erlang reliability helps to maintain the durability.

a heed for a specific

database... A

camp.io

camp.io

—asily coordinate multiple data sources coming
from devices, peoples or services around the
world through a decentralised data platform’

1 using the open source refuge solution: http://refuge.io

http://refuge.io

P va P .D»»f)ﬂ&adn..urﬁv
?Ir J..o\ltr.

R

)
o
.$
>
Q.
O
&

.
:-
- T -
- .
-
-
- -
-
B
-

camp.io

e take the control of your data back
* decentralizing data

* replicas and snapshots around the world

queries should be decentralized

* replicate snapshots data in difference parts of the
world, offices or devices

e gueries happen on snapshots
* sometimes offline
e or disconnected from the primary source

e and can be disconnected from other sources.

writes happen independently of reads

* writes can be centralised

e ...o0rreplicated

* without interactions with other nodes.
e over the net using HTTP(s) or not.

e support transactional writes

mnesia partly
fit the bill

mnesia, partly fit the bill

replication
Location transparency.
diskless nodes

transactions support with realtime capabillities
(locks selection)

but

replication works only between connected Erlang
nodes

no offline capabilities

transactions imply dialog between different nodes
where there is a replica (write lock)

facts and
a bit of history...

we started by... using couchdb vs mnesia

imit of a database > 2 GB
master-master replication

no nodes connections needed: P2P
View indexation

Modern storage

refuge.io project

2011 2012 03/2014 06/2014

couchdb hack rcouch opencouch enki

r--
|
L--

AN

The time we have lost

hack apache couchdb. make it OTPish

rcouch (http://github.com/rcouch)

major refactoring to create an Erlang CouchDB
releases

some patches and new features
the view changes

WIP: merge back in Apache CouchDB

http://github.com/rcouch

opencouch - the diet cure...

rcouch was too complicated to embed

in a need of a simpler API to add new features
need to able to use different transports

need something without all the extra

https://github.com/benoitc/opencouch

https://github.com/benoitc/opencouch

enki
one step further...

enki design

* document oriented database
e blob support
e 3 components

* Peers

 Updaters

e Storage services

enki design

\mpncate : application

.....................................

transactions

& changes notifications read and replicate snapshots

storage service

peers

Erlang library embedded in Erlang applications
send transactions to the updaters

guery the storage services

edit locally (oftline or not)

replication between peers

discovery of updaters and peers handled at the
application level

peers

e can replicate from Apache CouchDB

e a REST server exists

replication

e couchdb uses a revision tree
e tested other solutions:
e dotted version clock:

https://github.com/ricardobcl/Dotted-Version-
Vectors

* Interval tree clocks:
https://github.com/ricardobcl/Interval-Tree-Clocks

* settled to a revision tree with minor adjustments

https://github.com/ricardobcl/Dotted-Version-Vectors
https://github.com/ricardobcl/Interval-Tree-Clocks

enki revision tree

* add concurrent edit concept (also defined by
damien katz)

 multi-backend support

updater

only manage the transactions

can manage conflicts via stored functions or
transaction functions

accept connections over different transport and
using Erlang RPC.

more complicated than a gen_server but not so
much.

how a document is stored in couchdb?

2 Indexes: by ID, by seq,
transaction happen at document level.

the value is the revision tree. There Is one revision
tree / document.

Each revisions are stored as immutable chunks in

the database ftile, only reference are passed to the
revision tree.

storage

key-value interface and CAS for updating

revision tree |s stored as a value associlated to the
document key

revisions are stored as iImmutables values

can be remote (amazon dynamodb, postgres,
riak..) or local (leveldb, cowdb)

use transaction capabilities of the storage if
existing

cowdb : local storage engine

based on the Apache CouchDB btree
pure Erlang append only btree
Handle transactions

provide an easy api to store objects

the couchdb btreee

copy-on-write (COW)
append-only
can store multiple btrees

but use a lot of space (need to compact)

cbt: first attempt to extract it

https://bitbucket.org/refugeio/chbt

low level.
wasn't really usable by the end-developer

wanted to provide a simple way to handle it.

https://bitbucket.org/refugeio/cbt

1. create a database and initialize a btree

1> {ok, Fd} = cbt file:open("test.db").

{ok,<0.35.0>}

2> {ok, Btree} = cbt btree:new(Fd).

{ok, {btree,<0.35.0>,nil,undefined,undefined,undefined,nil,
snappy,1279}}

2. Initlalize the btree

3> {ok, Btreel} = cbt_btree:add(Btree, [{a, 1}]).
{ok,{btree,<0.35.0>,

10, [1,32},
undefined,undefined,undefined,nil,snappy,1279}}

3. read a value

4> Root = cbt_btree:get_state(Btreel).

{0,[1,32}
5> Header = {1, Root}.

{1,{0,[]1,32}}
o> cbt_file:write_header(Fd, Header).

1. read the header

1> {ok, Fd} = cbt_file:open("test.db").
{0k, <0.44.0>}
2> {ok, Header} = cbt_file:read_header(Fd).

{ok,{1,{0,[],32}}}
2. Initialize the btree

10> {_, Root} = Header.

11,40, [1,32}%
11> {ok, SnapshotBtree} = cbt_btree:open(Root, Fd).
{ok,{btree,<0.44.0>,

10,[1,32},
undefined,undefined,undefined,nil,snappy, 1279}}

3. read a value

12> cbt_btree:lookup(SnapshotBtree, [a]).
[{ok,{a,1}}]

useful but not for
the end developer.

cowdb another object database

» https://bitbucket.org/refugeio/cowdb

* wrapper around the couchdb btree

* doesn’t depends on cbt (but should be probably)

https://bitbucket.org/refugeio/cowdb

initialize a database

1> {ok, Pid} = cowdb:open("testing.db",
1> fun(St, Db) -> cowdb:open_store(Db, "test") end

>).
{ok,<0.35.0>}

iInitialize a store

simple transaction

2> cowdb:lookup(Pid, "test", [a,b]).

[{ok,{a,1}},{ok,{b,2}}]
3> cowdb:transact(Pid, [{remove, "test", b}, {add, "test", {c,

31 D).
ok

4> cowdb:lookup(P1d, "test", [a,b,c]).
[{ok,{a,1}},not_found,{ok,{c,3}}]

5> cowdb:get(Pid, "test", a).
{ok,{a,1}}

transaction functions

transaction function

/> cowdb:transact(Pid, [
{fn, fun(Db) -> [{add, "test", {d, 2}}] end}
D.
ok
8> cowdb:lookup(Pid, "test", [d]).

[10k,1d,2}}]

opensourcing Enki

-nki will be released under an opensource
icense. Paying support will be available.

e ! &

Refuge.io camp.io
@benoitc

