

What am I ?
• Bryan Hunt

• Basho Client Services Engineer

• Erlang neophyte

• JVM refugee

• Be gentle

What are you?

• Developer

• Operations

• Other

Structure of this talk

• Introduction to Riak

• Introduction to Riak 2.0

• Riak 2.0 Features

• Example uses

Introduction to Riak

Key Value

Key Value

Key Value

Key Value

Key Value

Key Value

Key Value

Key Value

What is Riak?

Riak is the

ops-friendly

database

Runs on everything

Except Windows

Cluster of

DISTRIBUTED

nodes
Performance through

concurrency

All nodes participate
equally

MASTERLESS

 No single point of
failure

Easily add or remove
nodes

SCALABLE

Linear scalability

Replicas of stored
data

HIGHLY AVAILABLE

Erlang core

FAULT TOLERANT

self healing

• Simple deployment model

• Predictable performance

• Easy scaling

• Less tedium

• More sleep

So what?

Introduction to Riak
2.0

The Swiss Army Database

Nope. Not like this

Actually, more like
this..

Riak 2.0 Features

Riak 2.0 key features
• Riak Data Types (CRDT’s)

• Full-Text Search (Yokozuna)

• Security

• Simplified Configuration (Cuttlefish)

• Reduced Replicas for Multiple Data
Centers

• Strong Consistency

Riak Data Types

subject <text>

message_20

body <text>

in_reply_to message_17

date <text>

Set CRDT

Map CRDT

Key

responses

message_22

message_24

message_26

Object

Register CRDT’s

Binaries

CRDT’s - how was it
before ?

• Client side conflict resolution (siblings)

• All objects was opaque to RIAK

CRDT’s - Simple use
cases

!

• Increment a value

• Append values to an object

• Batch add or remove multiple
associated objects

CRDT’s - incrementing
concurrently - before (1)

• GET /riak/pints_sold

• Deserialize/increment/Serialize

• PUT /riak/pints_sold

Client 1

CRDT’s - incrementing
concurrently - before (2)

• GET /riak/pints_sold	

• Deserialize/increment/Serialize	

• PUT /riak/pints_sold - CONFLICT !!! BOOM !

Client 2	

CRDT’s - incrementing
concurrently - before (3)

• GET /riak/pints_sold (both siblings)	

• Deserialize/Merge/Serialize	

• PUT /riak/pints_sold

Client 2

Boring!

CRDT’s - incrementing
concurrently - now

• Create a bucket-type with the data-type
'counter'

• Active the bucket-type

• Initialize the bucket

• Send increment or decrement commands
to the server

CRDT’s - how we used
to append to an object

1. Fetch

2. Deserialize

3. Append

4. Store

5. Conflict GOTO 1

CRDT’s - how we now
append to an object

• Create a bucket-type with the data-
type ’set'

• Active the bucket-type

• Initialize the bucket

• Send add, remove, add_all, and
remove_all commands to the server

CRDT’s - complex
nested data

how we used to do it

CRDT’s - complex
nested data (now)

• Conflict resolution is handled on the
server

• Manipulate remote data structures by
sending update commands to Riak

• Avoids client-side roundtrip

• Reduces write contention

• It’s just easier

Yokozuna

AKA Search 2.0

• Full-text search

• Integration with Apache Solr

Yokozuna

How did we search before ?

• Original Riak Search	

• Secondary indexes (2i)	

• Map-Reduce	

Yokozuna
Original Riak search

• Implemented in Erlang	

• Subset of Solr functionality	

• Perpetually chasing feature parity	

!

Yokozuna
2i search

• Two types of secondary attributes:  
integers and strings (aka binary).	

• Querying by exact match or range on one index.	

• Index is defined at object creation time	

!

Yokozuna
Limitations of 2i

• No full-text (term based) query capability.	

• Composite queries require multiple range queries	

• Not supported on bitcask, only leveldb and memory

Yokozuna

MapReduce

• Not suitable for real-time querying	

• Designed for scheduled analytics	

• Not a search engine

Security

riak-admin security enable

Security
Authentication

• Trust

• Password file

• PAM

• Certificate

Security
Authorization

• GET

• PUT

• DELETE

• INDEX

• Per bucket

• Per operation

Cuttlefish

Simplified Configuration
Management

Cuttlefish - how it was

The old configuration file format was a huge
list of terms.

 %% Riak Core config

 {riak_core, [

 %% Default location of ringstate

 {ring_state_dir, “./data/ring"},

 %% Default ring creation size. Make sure it is
a power of 2,

 %% e.g. 16, 32, 64, 128, 256, 512 etc

 %{ring_creation_size, 64}, ad infinitum….

Cuttlefish - now
The new configuration file format

!

%% implicit scope	

ring_size = 64	

%% explicit scope	

foo.bar.baz = “alice"	

Cuttlefish - so what?

Cuttlefish payoff -
UNIX admin

sed -i'' -e ‘/ring_size.*=/{s_.*_ring_size = 128_;}' ./**/etc/
riak.conf	

Cuttlefish payoff -
Configuration Management

Let’s take Ansible as an example
—	

 - hosts: all	

 tasks:	

 - name: ensure ring size is 128 	

 lineinfile: dest=/etc/riak.conf 	

 line='ring_size = 128' 	

 regexp=‘ring_size[^=]*=.*' 	

 owner=root 	

 state=present create=False	

Reduced Replicas for
Multiple Data Centers

Strong Consistency

Example uses

Social Media (old)
Documents

DatastoreSphinx/Lucene

Index Writers Storage Writers

Message Bus

Twitter Other Providers

Receivers

Replica Datastore

UUID Generator

Social Media (new)
Documents

Riak

Twitter Other Providers

Receivers

Riak Client

Social Media (old)
Riak ClientReceiver Riak

POST Index

UUID
Buffer

POST object

Send entity

Write
term-store

Sphinx/Lucene

Social Media (new)
Riak ClientReceiver Riak

POST
Index CRDT

POST object

Send entity

The End

• Questions ?

