Hobby Electronics
With Erlang
on the Raspberry Pi

— -—,Q';’ -

Angela Johansson
EUC 9-10 June 2014

7/

Pl TR SRTeRR SRR W

Video - MB Led

“MB Led
“Cool, so this is written in Erlang then?

®
[X
(| N)
[N)
(GN -]
o0
o0
[N

“Well, no.

“So what’s your point?
“It might as well have been written in Erlang!

*Communicating entities, message passing
“Choosing leaders, autonomous parts, scaling...

“State machines, recursion
Let me know if you implement an Erlang version before me!

The Sky is the Limit!

®
(X

“MB Led
http://mbled.wordpress.com/

inspired by
“GLiP - (a) Great LED Interactive Puzzle

http://www.glip.fr/

Check it out

“So how and where did you start?
“1 built Adafruit (and other) projects
“DIY-kits ”IKEA style”
ChMipm

00000000

oooooooo

“You get source code written in Python
- very similar to Erlang!

Start small, go from there

.4“ R.J B g .Y;m.
v o a1 ‘
2 ,t)
Cia) V j_

f.oo.ooo.
-~
00000000

r-

o
-
:
»

| —

LED matrix fun

]

B i B R f: Y

- J - ST

h.n.' * e . P
B P e Sy 22

It’s not always as difficult
as it seems!

*“There is so much to choose from!
“Change something, combine, experiment

== O\

“Let your imagination roam free -
What do you want to build and what does it do?

*So why use Erlang? [- I
E

1.
2
3.

Simply because it’s possible. RLANG

Your code will design and write itself.

Erlang is ideal for talking to HW:
communication, state machines, fault tolerance,

value crunching...

. You want to extend your code later on.

Add an Erlang touch!

Why not use Erlang?

... when it’s a Raspberry Pi

“Where does Erlang fit into this?
“First, understand the existing code

Erlang application

Erlang driver code

Erlang libs C

Command
Linux kernel line tools

It’s a piece of cake!

. “BA‘Déi%l%?CﬁGj

“So, what did you do then? szaee
*Googled ”12C Linux” 1
*Took some C-code, wrote a NIF

open address 0x..
Erlang code [¢ read register Ox..

Linux write 0x.. to
Use SMBus API
exposed Data

by libi2c-dev sheet m==) Test HW

Yes, it’s really that easy.

“Once written, the libs can of course be reused

1. My code:
git://github.com/drimtajm/erlang-rpi-hw-drivers

“Upcoming feature: SPI support

7. From the author of Mockgyver: WPI
git://github.com/klajo/wpi

“Uses the Wiring Pi library (C code)

3. ALE - Erlang Actor Library for Embedded
git://github.com/esl/erlang ale

“From Erlang Solutions
“Or write your own...

Your choice

®

“Why not work test driven?
“Unit testing with Mockgyver and Proper
“System testing with common test

“Simulators and messages

Application

Driver

System simulator

HW simulator(s)

HW bus stub

Test case
(Common
Test)

Testing is good for you

setup () —->
[...]
%% Mock I2C interface methods
?WHEN (12c interface:open i2c bus(Address) -> {ok, ?HANDLE}),
?WHEN (12c_interface:close 12c bus(Address) -> ok),
[...]
{ok, Pid} = adsl015 driver:start link(),
Pid.

init should open i2c bus test() ->
?WAS CALLED (12c interface:open 12c bus (?I2C ADDRESS)) .

terminate should close 12c bus test (Pid) ->
adsl015 driver:stop(),
wait for exit(Pid),
?WAS CALLED (12c interface:close i2c bus (?HANDLE)) .

Mockovver

prop set status bit always sets status bit() ->
?FORALL (BitPattern, word value(),
begin
NewBitPattern =
adsl015 driver lib:set status bit (BitPattern),
1s integer (NewBitPattern)
and ((NewBitPattern band ?STATUS BIT) > 0)
end) .

prop decodes encoded data rate() ->
?FORALL (DataRate, data rate value(),
DataRate ==
adsl015 driver lib:decode data rate (
adsl015 driver lib:encode data rate(DataRate))).

data rate value() ->

oneof ([128, 250, 490, 920, 1600, 2400, 3300]).

Pronar

*Back to the Future

Build something new

“How hard can it be?!
*Actually, it turned out to be as easy as | imagined

“But: Routing was time-consuming in Eagle
and | left the surface mounting part to an expert

@ Data

sheet

Let the hardware do
most of the job for you

?Simple” is relative...

“Putting it together
“Display test mode
“| only needed my 12C primitives

Step by step...

“Tell us about the software!
“*Thrown together” to make it work
“ At least some thoughts behind the desgin

change destinm toggle_leds
Destination Time

FA
I Current Time
C

L]
- > =

check_time_and_toggle_leds

00 M 0O v I M
= E; ' o S P—
=t AMA cu i i a8
=

ountdown Clock

Time Circuit Lib

It works!

“Demo

g Jul 2014 14255

07,Jun (2014 21:18

*So, what about communication?
*”Connected by Cybercom”
“Make the system distributed, just ”for fun”

Destination Time

Simply run this

Current Time on a remote
node using
Countdown Clock rpc:call/4

In a connected world,
Erlang rules!

“Is there bluetooth support for Erlang?
“Strangely, | found nothing when | googled

3,

“| would like to send binaries ”the Erlang way”
*Bluez provides a bluetooth stack in Linux

“RFCOMM (”serial port emulation”) can be used to
transfer data, you only need to create sockets

“So | wrote a NIF against Bluez d

“Cards must be put in ”scan mode” é
“Packets are ”concatenated” when they arrive

If it doesn’t eXxist,
write it yourself

go() ->
[...]
{ok, Socket} = bluetooth interface:create rfcomm socket(),
ok bluetooth interface:bind bt socket (Socket, ?PORT,
LocalMac),
ok bluetooth interface:bt socket listen(Socket),
Pid = spawn 1link (?MODULE, socket acceptor, [self (), Socket]),
receive
{Pid, done} -> ok
after 60000 ->
error (timeout)
end,
bluetooth interface:close bt socket (Socket).

socket acceptor (Caller, Socket) ->
{ok, Socket?2, RemoteAddress} =
bluetooth interface:bt socket accept (Socket),
recelive loop (Socket2),
Caller ! {self (), done},
ok.

Rhiietonth - carver cide

go() ->
{ok, Socket} = bluetooth interface:create rfcomm socket(),
Pid = spawn (?MODULE, socket connector, [self(), Socket,

RemoteMac]),
receive
{Pid, done} -> ok

end,
bluetooth interface:close bt socket (Socket).

socket connector (Caller, Socket, RemoteMac) ->
ok = bluetooth interface:bt socket connect (Socket, ?PORT,
RemoteMac),
Data = erlang:term to binary({self(), greetings}),
= bluetooth interface:bt socket send(Socket, Data),
[...]
DataZ = term to binary("Bye!"),
= bluetooth interface:bt socket send(Socket, Data2),
timer:sleep (10000),
Caller ! {self (), done},
ok.

Rliietoonth - client cide

“So do you plan on developing this further?
* Absolutely! @
“But | would like some help from you...

“Ideally, one would like to have the same support
in Erlang as for TCP sockets/inet - bnet!

“Make use of bluetooth services - ebpmd?
“Facilitate automatic card setup/configuration
“Rewrite it as an Erlang port

“Support for Windows (Widcomm?) <
“Other suggestions? é

Let me know
if you’re interested!

Angela Johansson
angela.johansson@gmail.com

Twitter & Github:
@drimtajm

