
Angela Johansson
EUC 9-10 June 2014

* Video – MB Led

* MB Led

* Cool, so this is written in Erlang then?
* Well, no.

* So what’s your point?
* It might as well have been written in Erlang!

* Communicating entities, message passing

* Choosing leaders, autonomous parts, scaling...

* State machines, recursion

Let me know if you implement an Erlang version before me!

* MB Led

http://mbled.wordpress.com/

inspired by

* GLiP - (a) Great LED Interactive Puzzle

http://www.glip.fr/

* So how and where did you start?
* I built Adafruit (and other) projects

* DIY-kits ”IKEA style”

* You get source code written in Python
- very similar to Erlang!

* There is so much to choose from!
* Change something, combine, experiment

* Let your imagination roam free –
What do you want to build and what does it do?

* So why use Erlang?

1.  Simply because it’s possible.

2.  Your code will design and write itself.

3.  Erlang is ideal for talking to HW:
communication, state machines, fault tolerance,
value crunching...

4.  You want to extend your code later on.
Add an Erlang touch!

* Where does Erlang fit into this?
* First, understand the existing code

Linux kernel

HW

Python application

Python driver code

Python libs

Adafruit repo

”Prerequisites”

Erlang application

Erlang driver code

C API

Files

Memory mapping

Erlang libs C

OS
Command
line tools

* So, what did you do then?
* Googled ”I2C Linux”

* Took some C-code, wrote a NIF

NIF
Erlang code

open address 0x..
read register 0x..
write 0x.. to
register 0x..

Linux
kernel C code

Use SMBus API
exposed

by libi2c-dev
Data
sheet Test HW

* Once written, the libs can of course be reused

1.  My code:
git://github.com/drimtajm/erlang-rpi-hw-drivers

* Upcoming feature: SPI support

2.  From the author of Mockgyver: WPI
git://github.com/klajo/wpi

* Uses the Wiring Pi library (C code)

3.  ALE - Erlang Actor Library for Embedded
git://github.com/esl/erlang_ale

* From Erlang Solutions

* Or write your own...

* Why not work test driven?
* Unit testing with Mockgyver and Proper

* System testing with common test

* Simulators and messages

 Bus driver
HW simulator(s)

HW bus stub

Test case
(Common

Test)

System simulator

Driver

Application

Bus driver

setup() ->
 [...]
 %% Mock I2C interface methods
 ?WHEN(i2c_interface:open_i2c_bus(_Address) -> {ok, ?HANDLE}),
 ?WHEN(i2c_interface:close_i2c_bus(_Address) -> ok),
 [...]
 {ok, Pid} = ads1015_driver:start_link(),
 Pid.

[...]

init_should_open_i2c_bus_test(_) ->
 ?WAS_CALLED(i2c_interface:open_i2c_bus(?I2C_ADDRESS)).

terminate_should_close_i2c_bus_test(Pid) ->
 ads1015_driver:stop(),
 wait_for_exit(Pid),
 ?WAS_CALLED(i2c_interface:close_i2c_bus(?HANDLE)).

prop_set_status_bit_always_sets_status_bit() ->
 ?FORALL(BitPattern, word_value(),
 begin
 NewBitPattern =
 ads1015_driver_lib:set_status_bit(BitPattern),
 is_integer(NewBitPattern)
 and ((NewBitPattern band ?STATUS_BIT) > 0)
 end).

prop_decodes_encoded_data_rate() ->
 ?FORALL(DataRate, data_rate_value(),
 DataRate ==
 ads1015_driver_lib:decode_data_rate(
 ads1015_driver_lib:encode_data_rate(DataRate))).

data_rate_value() ->
 oneof([128, 250, 490, 920, 1600, 2400, 3300]).

* Back to the Future

* How hard can it be?!
* Actually, it turned out to be as easy as I imagined

* But: Routing was time-consuming in Eagle
and I left the surface mounting part to an expert

Data
sheet

* ”KISS”

* Putting it together
* Display test mode

* I only needed my I2C primitives

* Tell us about the software!
* ”Thrown together” to make it work

* At least some thoughts behind the desgin

Destination Time

Time Circuit Lib

Main Current Time

Countdown Clock

change destination time toggle_leds

check_time_and_toggle_leds

check_time

* Demo

* So, what about communication?
* ”Connected by Cybercom”

* Make the system distributed, just ”for fun”

Destination Time

Main Current Time

Countdown Clock Countdown Clock

Simply run this
on a remote
node using
rpc:call/4

* Is there bluetooth support for Erlang?
* Strangely, I found nothing when I googled

* I would like to send binaries ”the Erlang way”

* Bluez provides a bluetooth stack in Linux

* RFCOMM (”serial port emulation”) can be used to
transfer data, you only need to create sockets

* So I wrote a NIF against Bluez

* Cards must be put in ”scan mode”

* Packets are ”concatenated” when they arrive

go() ->
 [...]
 {ok, Socket} = bluetooth_interface:create_rfcomm_socket(),
 ok = bluetooth_interface:bind_bt_socket(Socket, ?PORT,
 LocalMac),
 ok = bluetooth_interface:bt_socket_listen(Socket),
 Pid = spawn_link(?MODULE, socket_acceptor, [self(), Socket]),
 receive
 {Pid, done} -> ok
 after 60000 ->
 error(timeout)
 end,
 bluetooth_interface:close_bt_socket(Socket).

socket_acceptor(Caller, Socket) ->
 {ok, Socket2, RemoteAddress} =
 bluetooth_interface:bt_socket_accept(Socket),
 receive_loop(Socket2),
 Caller ! {self(), done},
 ok.

go() ->
 {ok, Socket} = bluetooth_interface:create_rfcomm_socket(),
 Pid = spawn(?MODULE, socket_connector, [self(), Socket,
 RemoteMac]),
 receive
 {Pid, done} -> ok
 end,
 bluetooth_interface:close_bt_socket(Socket).

socket_connector(Caller, Socket, RemoteMac) ->
 ok = bluetooth_interface:bt_socket_connect(Socket, ?PORT,
 RemoteMac),
 Data = erlang:term_to_binary({self(), greetings}),
 ok = bluetooth_interface:bt_socket_send(Socket, Data),
 [...]
 Data2 = term_to_binary("Bye!"),
 ok = bluetooth_interface:bt_socket_send(Socket, Data2),
 timer:sleep(10000),
 Caller ! {self(), done},
 ok.

* So do you plan on developing this further?
* Absolutely!
* But I would like some help from you...
* Ideally, one would like to have the same support

in Erlang as for TCP sockets/inet – bnet!
* Make use of bluetooth services – ebpmd?
* Facilitate automatic card setup/configuration
* Rewrite it as an Erlang port
* Support for Windows (Widcomm?)
* Other suggestions?

