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Cracks and a Chasm

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Laggards

Crack

CrackChasm

To cross the chasm you must talk business value!



Enterprise Software

http://kesseljunkie.files.wordpress.com/2011/06/star_wars_death_star_38200545907pm743.jpg
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What Killed the Death Star?

MissileEnteredUnprotecedVentilationShaftException

PowerShieldBreakdownException

SurfaceWithAlleysDesignException
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Citius, Maior, Vilius

Business Imperative
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 speed to market

 reliable

 scalable

 maintainable
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Agile Manifesto

 Individuals and interactions > Processes and tools

 Working software > Comprehensive documentation

 Customer collaboration > Contract negotiation

 Responding to change > Following a plan



Software Architecture

 Separation of concerns	



 Quality-driven	



 Recurring styles	



 Conceptual integrity



Erlang History
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 - C.A.R. Hoare
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Erlang’s Original 
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

 Continuous operation for many years

 Software maintenance on-the-fly 

 High quality and reliability 

 Fault tolerance 
Bjarne Däcker’s Licentiate Thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957
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If our basic tool, the language in which we 
design and code our programs, is also 
complicated, the language itself becomes part of 
the problem rather than part of its solution.	


!

- C.A.R. Hoare



Good Erlang Domains



Good Erlang Domains

 Low latency over throughput



Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)



Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent



Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed



Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant



Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP



Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

 Non-stop operation



Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

 Non-stop operation

Under load, Erlang programs 
usually performs as well as 
programs in other languages, 
often way better.	



Jesper Louis Andersen



The glove fits!

Low 
latency Stateful Massively 

concurrent Distributed Fault tolerant

Messaging

Webservers

Soft switches

Distributed DBs

Queueing 
systems



The Golden Trinity Of Erlang
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Failures

Most programming paradigmes are 
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	


will go wrong	



Murphy
Programming errors
Disk failures
Network failures

Erlang is fault tolerant by design
 ⇒ failures are embraced and 

managed

source: http://johnkreng.wordpress.com/tag/jean-claude-van-damme/
source: http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/
should-we-be-worried-about-this-brooklyn-measles-outbreak

http://johnkreng.wordpress.com/tag/jean-claude-van-damme/
http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/should-we-be-worried-about-this-brooklyn-measles-outbreak


Let It Fail
convert(monday)    -> 1;!
convert(tuesday)   -> 2;!
convert(wednesday) -> 3;!
convert(thursday)  -> 4;!
convert(friday)    -> 5; !
convert(saturday)  -> 6;!
convert(sunday)    -> 7!                       ;!
convert(_) ->!
         {error, unknown_day}.!
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Let It Fail
convert(monday)    -> 1;!
convert(tuesday)   -> 2;!
convert(wednesday) -> 3;!
convert(thursday)  -> 4;!
convert(friday)    -> 5; !
convert(saturday)  -> 6;!
convert(sunday)    -> 7!

Erlang encourages offensive programming

                       .!
!
  



Intentional 
Programming

 a style of programming where the reader of 
a program can easily see what the 
programmer intended by their code. [1]	



[1] http://www.erlang.org/download/armstrong_thesis_2003.pdf

http://www.erlang.org/download/armstrong_thesis_2003.pdf


Intentional Dictionary
 data retrieval - dict:fetch(Key, Dict) = Val | EXIT 

     the programmer knows a specific key should be in the 
dictionary and it is an error if it is not. 	



 search - dict:find(Key, Dict) = {ok, Val} | error. 

     it is unknown if the key is there or not and both cases must be 
dealt with. 	



 test - dict:is_key(Key, Dict) = Boolean 

     knowing if a key is present is enough. 	
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Benefits of let-it-fail

code	
  that	
  solves	
  	
  
the	
  problem

Erlang	
  @	
  3x
Source:	
  h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-­‐
gains-­‐in-­‐erlang

Data	
  Mobility	
  component	
  breakdown



Show me the money!

Conservative estimation of the number 	


of inputs, outputs and internal storage

Includes design, box test, system test, 
project management efforts

Function Point Analysis of the size of the problem



Intermezzo
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Language and Models

How many trains on one piece of track?

0..N

Without a language for something you cannot talk about it!
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Visual Erlang Objectives

 Detailed enough to capture important aspects

 Not suited for 100% explanation of Erlang

 Standardise on how we show Erlang architecture

 https://github.com/esl/visual_erlang

https://github.com/esl/visual_erlang


Processes in Visual Erlang



Functions and Statedata



Visual Erlang Patterns

 Adds vocabulary about architecture	



 Share insights	



 Consider failures while designing 



Tuple Space Storage Pattern



Manager/Worker Pattern



Supervisor Pattern



Why Document Erlang Patterns?

source: http://christianaaddison.wordpress.com/2011/04/19/week-four-ux-boot-camp-co-design/

Concept from R. Martin “The Design of Business”

http://christianaaddison.wordpress.com/2011/04/19/week-four-ux-boot-camp-co-design/


Realities of software development

Source: http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

????

http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/


Realities of software development

Source: http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

Product	


Owner

http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/
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Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

 Not the software!

Software architecture 
that supports 

iterative development
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