
Erlang Patterns Matching Business Needs	

Torben Hoffmann	

CTO, Erlang Solutions	

torben.hoffmann@erlang-solutions.com	

@LeHoff

mailto:torben.hoffmann@erlang-solutions.com

Erlang Patterns Matching Business Needs	

Torben Hoffmann	

CTO, Erlang Solutions	

torben.hoffmann@erlang-solutions.com	

@LeHoff

& Idioms

mailto:torben.hoffmann@erlang-solutions.com

Cracks and a Chasm

Technology enthusiasts

Visionaries

Pragmatists
Conservatives

Laggards

Crack

CrackChasm

To cross the chasm you must talk business value!

Enterprise Software

http://kesseljunkie.files.wordpress.com/2011/06/star_wars_death_star_38200545907pm743.jpg

What Killed the Death Star?

What Killed the Death Star?

PowerShieldBreakdownException

What Killed the Death Star?

PowerShieldBreakdownException

SurfaceWithAlleysDesignException

What Killed the Death Star?

MissileEnteredUnprotecedVentilationShaftException

PowerShieldBreakdownException

SurfaceWithAlleysDesignException

Expect resistance…

Source: http://2.bp.blogspot.com/-qNM3LGTtUYM/UIFLJGd_MLI/AAAAAAAAAnU/GCtI5SYfbCs/s320/orc-army.jpg

source: http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg

source: http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg
http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

Expect resistance…

Source: http://2.bp.blogspot.com/-qNM3LGTtUYM/UIFLJGd_MLI/AAAAAAAAAnU/GCtI5SYfbCs/s320/orc-army.jpg

source: http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg

source: http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg
http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

Expect resistance…

Source: http://2.bp.blogspot.com/-qNM3LGTtUYM/UIFLJGd_MLI/AAAAAAAAAnU/GCtI5SYfbCs/s320/orc-army.jpg

source: http://www.rottentomatoes.com/m/1014027-mission/

source: http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg

source: http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

http://asset3.cbsistatic.com/cnwk.1d/i/tim2/2013/08/12/Larry_Ellison_Oracle_Open_World_2009_610x407.jpg
http://images1.wikia.nocookie.net/__cb20110119125642/villains/images/e/ef/Saruman.jpg

Citius, Altius, Fortius

Citius, Altius, Fortius

Olympic Motto

Citius, Maior, Vilius

Citius, Maior, Vilius

Business Imperative

Everlasting Software Requirements

Everlasting Software Requirements

 speed to market

Everlasting Software Requirements

 speed to market

 reliable

Everlasting Software Requirements

 speed to market

 reliable

 scalable

Everlasting Software Requirements

 speed to market

 reliable

 scalable

 maintainable

Agile Manifesto

Agile Manifesto

 Individuals and interactions > Processes and tools

Agile Manifesto

 Individuals and interactions > Processes and tools

 Working software > Comprehensive documentation

Agile Manifesto

 Individuals and interactions > Processes and tools

 Working software > Comprehensive documentation

 Customer collaboration > Contract negotiation

Agile Manifesto

 Individuals and interactions > Processes and tools

 Working software > Comprehensive documentation

 Customer collaboration > Contract negotiation

 Responding to change > Following a plan

Software Architecture

 Separation of concerns	

 Quality-driven	

 Recurring styles	

 Conceptual integrity

Erlang History

There are two ways of constructing a
software design:

There are two ways of constructing a
software design:
One way is to make it so simple that
there are obviously no deficiencies…

There are two ways of constructing a
software design:
One way is to make it so simple that
there are obviously no deficiencies…
… and the other way is to make it so
complicated that there are no obvious
deficiencies.

There are two ways of constructing a
software design:
One way is to make it so simple that
there are obviously no deficiencies…
… and the other way is to make it so
complicated that there are no obvious
deficiencies.

 - C.A.R. Hoare

Erlang’s Original
Requirements

Erlang’s Original
Requirements

 Large scale concurrency

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

 Continuous operation for many years

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

 Continuous operation for many years

 Software maintenance on-the-fly

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

 Continuous operation for many years

 Software maintenance on-the-fly

 High quality and reliability

Erlang’s Original
Requirements

 Large scale concurrency

 Soft real-time

 Distributed systems

 Hardware interaction

 Very large software systems

 Complex functionality

 Continuous operation for many years

 Software maintenance on-the-fly

 High quality and reliability

 Fault tolerance
Bjarne Däcker’s Licentiate Thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

wanted

wanted
productivity

wanted
productivity

no down-time

wanted
productivity

no down-time

something that always works

wanted

wanted

money

wanted

money

money

wanted

money

money

money

wanted

money

money

money

it’s a rich man’s world!

wanted

money

money

money

it’s a rich man’s world!

If our basic tool, the language in which we
design and code our programs, is also
complicated, the language itself becomes part of
the problem rather than part of its solution.	

!

- C.A.R. Hoare

Good Erlang Domains

Good Erlang Domains

 Low latency over throughput

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

 Non-stop operation

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

 Non-stop operation

Under load, Erlang programs
usually performs as well as
programs in other languages,
often way better.	

Jesper Louis Andersen

The glove fits!

Low
latency Stateful Massively

concurrent Distributed Fault tolerant

Messaging

Webservers

Soft switches

Distributed DBs

Queueing
systems

The Golden Trinity Of Erlang

To Share Or Not To Share

To Share Or Not To Share

Memory

To Share Or Not To Share

Memory

P1

To Share Or Not To Share

Memory

P1 P2

To Share Or Not To Share

Memory

P2

Corrupt

To Share Or Not To Share

MemoryCorrupt

To Share Or Not To Share

Memory MemoryCorrupt

To Share Or Not To Share

Memory Memory

P1

Corrupt

To Share Or Not To Share

Memory Memory Memory

P1

Corrupt

To Share Or Not To Share

Memory Memory Memory

P1 P2

Corrupt

To Share Or Not To Share

Memory Memory

P2

Corrupt Corrupt

To Share Or Not To Share

Memory Memory

P2

Corrupt

Failures
Anything that can go wrong, 	

will go wrong	

Murphy

Failures
Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors

Failures
Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures

Failures
Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Failures

Most programming paradigmes are
fault in-tolerant

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Failures

Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Failures

Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Failures

Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Erlang is fault tolerant by design

Failures

Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Erlang is fault tolerant by design
 ⇒ failures are embraced and

managed

Failures

Most programming paradigmes are
fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

Murphy
Programming errors
Disk failures
Network failures

Erlang is fault tolerant by design
 ⇒ failures are embraced and

managed

source: http://johnkreng.wordpress.com/tag/jean-claude-van-damme/
source: http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/
should-we-be-worried-about-this-brooklyn-measles-outbreak

http://johnkreng.wordpress.com/tag/jean-claude-van-damme/
http://www.thelmagazine.com/BrooklynAbridged/archives/2013/05/14/should-we-be-worried-about-this-brooklyn-measles-outbreak

Let It Fail
convert(monday) -> 1;!
convert(tuesday) -> 2;!
convert(wednesday) -> 3;!
convert(thursday) -> 4;!
convert(friday) -> 5; !
convert(saturday) -> 6;!
convert(sunday) -> 7! ;!
convert(_) ->!
 {error, unknown_day}.!

Let It Fail
convert(monday) -> 1;!
convert(tuesday) -> 2;!
convert(wednesday) -> 3;!
convert(thursday) -> 4;!
convert(friday) -> 5; !
convert(saturday) -> 6;!
convert(sunday) -> 7! .!
!

Let It Fail
convert(monday) -> 1;!
convert(tuesday) -> 2;!
convert(wednesday) -> 3;!
convert(thursday) -> 4;!
convert(friday) -> 5; !
convert(saturday) -> 6;!
convert(sunday) -> 7!

Erlang encourages offensive programming

 .!
!

Intentional
Programming

 a style of programming where the reader of
a program can easily see what the
programmer intended by their code. [1]	

[1] http://www.erlang.org/download/armstrong_thesis_2003.pdf

http://www.erlang.org/download/armstrong_thesis_2003.pdf

Intentional Dictionary
 data retrieval - dict:fetch(Key, Dict) = Val | EXIT

 the programmer knows a specific key should be in the
dictionary and it is an error if it is not. 	

 search - dict:find(Key, Dict) = {ok, Val} | error.

 it is unknown if the key is there or not and both cases must be
dealt with. 	

 test - dict:is_key(Key, Dict) = Boolean

 knowing if a key is present is enough. 	

Benefits of let-it-fail

Source:	
 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-­‐
gains-­‐in-­‐erlang

Data	
 Mobility	
 component	
 breakdown

Benefits of let-it-fail

code	
 that	
 solves	
 	

the	
 problem

Source:	
 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-­‐
gains-­‐in-­‐erlang

Data	
 Mobility	
 component	
 breakdown

Benefits of let-it-fail

code	
 that	
 solves	
 	

the	
 problem

Source:	
 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-­‐
gains-­‐in-­‐erlang

Data	
 Mobility	
 component	
 breakdown

Benefits of let-it-fail

code	
 that	
 solves	
 	

the	
 problem

Source:	
 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-­‐
gains-­‐in-­‐erlang

Data	
 Mobility	
 component	
 breakdown

Benefits of let-it-fail

code	
 that	
 solves	
 	

the	
 problem

Source:	
 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-­‐
gains-­‐in-­‐erlang

Data	
 Mobility	
 component	
 breakdown

Benefits of let-it-fail

code	
 that	
 solves	
 	

the	
 problem

Source:	
 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-­‐
gains-­‐in-­‐erlang

Data	
 Mobility	
 component	
 breakdown

Benefits of let-it-fail

code	
 that	
 solves	
 	

the	
 problem

Source:	
 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-­‐
gains-­‐in-­‐erlang

Data	
 Mobility	
 component	
 breakdown

Benefits of let-it-fail

code	
 that	
 solves	
 	

the	
 problem

Erlang	
 @	
 3x
Source:	
 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-­‐
gains-­‐in-­‐erlang

Data	
 Mobility	
 component	
 breakdown

Show me the money!

Conservative estimation of the number 	

of inputs, outputs and internal storage

Includes design, box test, system test,
project management efforts

Function Point Analysis of the size of the problem

Intermezzo

Language and Models

How many trains on one piece of track?

Language and Models

How many trains on one piece of track?

0..1

Language and Models

How many trains on one piece of track?

0..1 0..N

Language and Models

How many trains on one piece of track?

0..N

Language and Models

How many trains on one piece of track?

0..N

Without a language for something you cannot talk about it!

Visual Erlang

Visual Erlang Objectives

Visual Erlang Objectives

 Detailed enough to capture important aspects

https://github.com/esl/visual_erlang

Visual Erlang Objectives

 Detailed enough to capture important aspects

 Not suited for 100% explanation of Erlang

https://github.com/esl/visual_erlang

Visual Erlang Objectives

 Detailed enough to capture important aspects

 Not suited for 100% explanation of Erlang

 Standardise on how we show Erlang architecture

https://github.com/esl/visual_erlang

Visual Erlang Objectives

 Detailed enough to capture important aspects

 Not suited for 100% explanation of Erlang

 Standardise on how we show Erlang architecture

 https://github.com/esl/visual_erlang

https://github.com/esl/visual_erlang

Processes in Visual Erlang

Functions and Statedata

Visual Erlang Patterns

 Adds vocabulary about architecture	

 Share insights	

 Consider failures while designing

Tuple Space Storage Pattern

Manager/Worker Pattern

Supervisor Pattern

Why Document Erlang Patterns?

source: http://christianaaddison.wordpress.com/2011/04/19/week-four-ux-boot-camp-co-design/

Concept from R. Martin “The Design of Business”

http://christianaaddison.wordpress.com/2011/04/19/week-four-ux-boot-camp-co-design/

Realities of software development

Source: http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

????

http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

Realities of software development

Source: http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

Product	

Owner

http://www.thejournal.ie/readme/lunch-atop-skyscraper-photo-men-irish-shanaglish-518110-Jul2012/

Business benefits of supervisors

Business benefits of supervisors

 Only one process dies

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

 Not the software!

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

 Not the software!

Software architecture
that supports

iterative development

Cruising with Erlang

Cruising with Erlang

 Understand the failure model

Cruising with Erlang

 Understand the failure model

 Embrace failure!

Cruising with Erlang

 Understand the failure model

 Embrace failure!

 Use patterns to deliver business value

Cruising with Erlang

 Understand the failure model

 Embrace failure!

 Use patterns to deliver business value

 Stay in charge!

Cruising with Erlang

 Understand the failure model

 Embrace failure!

 Use patterns to deliver business value

 Stay in charge!

