

Ask not what your Erlang
can do for you

An Erlanger will fight to start Erlang
projects, and make others start

them as well

However, Erlang projects “can” fail

Oh No! People blame us
and Erlang

for the failure!

Using Erlang is not enough! Proper
engineering might also help

Imagine we have a golden
opportunity, our company is going to

start a new project to solve a big
problem

The current version of the software
is a disaster

Written in a vastly inferior language

The code is so complicated that is
unreliable and unmaintainable

Obviously, it is heavy and slow

We have to rebuild it in Erlang!

It is fault tolerant! No more bugs in
production!

Erlang scales to the infinity!

It is functional! We will add new
features in hours! If not minutes!

And it has hot code loading! No
more maintenance downtime!

So you create an awesome piece of
software in even less time than you

promised!

… well... we've got some production
issues ...

And we might have problems
handling the expected load for this

year ...

About doing that change... it might
take a while...

Erlang is a tool for writing software,
but writing good software is still hard

Erlang helps building fault tolerant
systems

Can't we just “let it crash”?

Erlang will not design your error
handling strategy for you, it just

helps to implement it

It is not trivial to design a good
application and supervision

hierarchy

Erlang helps to use SMP CPUs
efficiently

Erlang gives you a very decent
model to utilise SMP CPUs

efficiently

But today “scaling” usually
means scaling out

“Thinking Erlang” helps designing
scalable systems

Erlang helps writing concise and
easy to understand code

Good developers write good code in
any language, and viceversa

The impact on productivity is
significant at the beginning of the

project

Coding speed becomes less
relevant in the long term compared

to other overheads

Hot Code Loading

It helps a lot when debugging

Implementing an application that is
always running requires much more

than just hot code loading

It is often simpler to write distributed
applications where individual nodes
can be taken down, rebooted, etc

There are Bad Things™ that we
need to avoid or mitigate

Dynamic Typing

Dynamic typing is not an advantage,
it is a compromise

As the software matures, you'll be
fixing more and more bugs that are

actually typing errors

Work your software so that it is
robust against type errors

Tooling is weaker than for more
popular languages

Library support might be immature
or simply missing

Releasing and packaging in the
large is typically painful

Rudimentary encapsulation

Erlang has a flat module name
space, and only public/private

visibility for functions

You'll need to be serious about
architectural structure and
encapsulation conventions

VS

You could use tools to prevent this
weakness to degenerate into code

rot

My fellow erlangers, ask not what
your Erlang can do for you. Ask
what you can do for your Erlang

About Klarna:
http://engineering.klarna.com/

SignMeUp@klarna.com

About me:
samuel.rivas@klarna.com

@samuel_rivas

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 50
	Slide 51

