
Scaling Erlang to 10,000 cores	

!
!
!
Simon Thompson, University of Kent

Multicore and many-core

The inexorable rise in core
numbers …	

	

 … growing exponentially
just as processors used to.	

!

These are becoming the
standard platforms for
general-purpose systems.

Languages and tools

What are the right programming
models and tools …	

!

!

… for building general-purpose
software on these platforms?

Requirements

Robust against core failure …	

!

!

… scalable now and in the future.

The aim of RELEASE

To scale the actor,
concurrency-oriented,
paradigm … 	

!

… to build reliable general-
purpose software, such as
server-based systems, … 	

!

… on massively parallel
machines (105 cores).

Build on Erlang!

Erlang/OTP has inherently
scalable computation and
reliability models.

Multicore Erlang

Distribution and core failure

Distribution and core failure

Design choices

Erlang multicore is “black box” …	

	

 … we don’t change that	

	

 … but we do need to observe behaviour at that level.	

!

Current Erlang implementation: core failure → host failure …	

	

 … future technology may change that	

	

 … our focus is on scaling host numbers	

Build on Erlang?

Scalability is constrained in
practice … 	

… VM aspects: synchronisation
on internal data structures …	

… language aspects, e.g. fully
connected network of nodes,
explicit process placement …	

… tool support.

Building on Erlang/OTP

 The Virtual Machine

 Scalable Distributed Erlang

 Scalable Infrastructure
Tools

C
ase Studies

The Virtual Machine

“Are we there yet?”

http://release.softlab.ntua.gr/bencherl/

Improved VM infrastructure

Evolutionary changes in ETS storage … and proposals for more.	

Memory allocation / deallocation … less locking … more scalable.	

Better organisation of process and port tables … less locking needed. 	

More scalable internal management of processes / port signals …
…avoiding heavy contention when much incoming + outgoing data. 	

Non-blocking mechanisms for loading code and setting tracing support. 	

Algorithm preserving term sharing in copying and message passing …
… and its low-level implementation on the Erlang VM.	

Already in R16 … except the last.

Scalability of ETS: R11 to R16 …

Scalability of ETS: R11 to R16 …

Concurrency options R16 …

Scaling ETS - lessons learned

• ordered_set needs to be fixed or replaced	

• Locking is (still) a problem, but got better	

• NUMA is a problem	

• Reader groups may be not that important	

!

Some general advice

• Use pinning on NUMA	

• Use read_concurrency when doing only lookups	

• Use write_concurrency	

• Measure your use case when combining them

Eating our own dog food …

Applied the techniques of
the project to our own
systems … 	

… Dialyzer, and …	

… Wrangler.

SD Erlang

Scalable distribution: SD Erlang

Patterns for
interconnection.	

Semi-explicit
process
deployment.

Distribution “out of the box”

Completely
connected: all
nodes connected
to each other.	

Quadratic
complexity.

Scalability

Scalability
http://www.dcs.gla.ac.uk/~amirg/publications/ScalablePersistentStorage.pdf

Distribution “out of the box”

Completely
connected: all
nodes connected
to each other.	

Quadratic
complexity.

SD Erlang “out of the box”

Complete
connectivity within
each s_group.	

Overlap topology
supports nesting,
hierarchy and ad
hoc models.

Speedup

Scalability

s_group operations

Create and delete s_groups.	

Add and remove nodes from an s_group.	

Return information about s_groups and their contents.	

!

Register, re-register and unregister names in an s_group.	

Send a message to a named process. 	

Information about names and whereabouts of named processes.	

!

Based on the implementation of global groups in Erlang/OTP.

Semi-explicit placement

s_group:choose_nodes([{s_group,SGroupName}])

Choose eligible nodes for spawn from the identified s_group.	

!

s_group:choose_nodes([{attribute, AttributeName}])

Choose eligible nodes which have the given attribute. 	

!

Attributes include proximity, load, … .

Getting it right

eqc:quickcheck(prop_s_group()).

We built an executable operational semantics to model our
implementation.	

We used property-based testing with a state machine to check
compliance between the semantics and the implementation.	

!

Two errors in the semantic specification.	

Two errors in the s_group implementation.	

Two inconsistencies between the two.

Scalable Infrastructure

WombatOAM

WombatOAM is an operations and maintenance framework for Erlang
based systems. 	

It gives you full visibility on what is going on in Erlang clusters …	

… either as a stand-alone product or by integrating into existing OAM
infrastructure.

How it looks

WombatOAM

Monitor managed nodes liveliness	

Group nodes by Erlang releases	

Deploy Erlang releases in the cloud 	

Gather metrics from different sources, show them in graphs	

Capture logs, show error and crash logs promptly	

Show alarms raised by different applications in managed nodes

Alarms in WombatOAM

Tools

Wrangler

Refactoring infrastructure 	

	

 API: to write new refactorings from scratch	

	

 DSL: for “scripting” refactorings, supporting scaling	

Introducing s_groups, and other parallel constructs.	

Groups to s_groups.	

Dog food: we’ve parallelised Wrangler, too.

Concuerror

“Debugging race conditions in concurrent programs is sometimes a sad story.” 	

- Stavros Aronis	

 Explores all interleavings of the
processes, focusing on pairs of
"racing" events …	

… if a process crashes,
Concuerror will then give you a
detailed log of the events that
lead up to the crash.

Case studies for Mochiweb and Poolboy.	

http://concuerror.com

Percept2

Profile … analyse … display in a browser, enhancing Percept.	

Percept: active processes vs. time, drill down to process info …
… including runnability, start/end time, parent/child processes, etc. 	

Enhancements: scheduler info, process communication, run-queue
migration, runnable vs running, dynamic callgraph, links to source code,
distribution support, etc.	

Scalability: scalable process tree, selective profiling, parallel analysis and
caching history webpages.	

https://github.com/RefactoringTools/percept2

Improving Wrangler using Percept2

Improving Wrangler using Percept2

Improving Wrangler using Percept2

Devo

https://github.com/RefactoringTools/devo

Tracing Erlang

Enhancements to Erlang tracing … augmenting the VM	

	

 Logging only inter-node messages.	

	

 Filtering log messages.	

DTrace/SystemTap support 	

	

 Added probes.	

	

 Back-end for Percept2

Case studies

Discrete simulation engine aiming for maximum concurrency …
… with both parallel and distributed modes of operation. 	

It focuses notably on scalability, in order to handle simulation cases
which may be very large (potentially involving millions of interacting
instances of models).	

http://researchers.edf.com/software/sim-diasca-80704.html

Port Erlang to IBM BlueGene/Q

Summing up

University of Glasgow, University of Kent, Uppsala University and
ICCS, National Technical University of Athens.	

Erlang Solutions Ltd, Ericsson AB, Electricité de France.	

October 2011 – February 2015	

The project partners acknowledge the support of the European
Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement No. 287510.	

www.release-project.eu

Questions?

