“RELEASE

Scaling Erlang to 10,000 cores

Simon Thompson, University of Kent



HERIOT
T2 WAT'T

<2 UNIVERSITY

e

SOLUT/ONS

UPPSALA
UNIVERSITET

‘
~ S EDF

University of

Kent

af) University
/ of Glasgow

ERICSSON



Multicore and many-core

The inexorable rise in core
numbers ...

... growing exponentially
just as processors used to.

These are becoming the
standard platforms for
general-purpose systems.




Languages and tools

1 Jubﬁlvj <
.7 10 ')’L»qlLLLC’LV"

7"LU’UUULLULDL1 1
*mawuwaowuu
,0301131000101000101011 1

What are the right programming 10001030300030401010101.0
/01100010101001,001,01, ]

models and tools ... 100101011110101,01,01
"‘;“JUUllDLDLQw

. for building general-purpose
software on these platforms?




Requirements

Robust against core failure ...

... scalable now and in the future. K ’




The aim of RELEASE

To scale the actor,
concurrency-oriented,
paradigm ...

... to build reliable general- e | ‘ g
M 0
purpose software, such as — IMPACT! =

server-based systems, ...

... on massively parallel
machines (10° cores).




Build on Erlang!

i 1 B, thh‘, T e cifeviang).
5 . ]
\ l S Exphen “NQQ,CMJ:PLK' Parallell Haskell, ~ L07*'**
i y ' 3 SN paralciizem skel (patterns) :"'"“l;‘.”" any
- RY ode=? R
FA(TO a el 1)
. ' .. r N, peaduir)
- ‘ SML OCami :» Anedule RMNL 4008,

Erlang/OTP has inherently
scalable computation and
reliability models.

'n




Multicore Erlang




Distribution and core failure




Distribution and core failure




Design choices

Erlang multicore is “black box™ ...
... we don’t change that

... but we do need to observe behaviour at that level.

Current Erlang implementation: core failure — host failure ...
... future technology may change that

... our focus is on scaling host numbers



Build on Erlang!?

Scalability is constrained in
practice ...

... VM aspects: synchronisation
on internal data structures ...

... language aspects, e.g. fully
connected network of nodes,
explicit process placement ...

... tool support.

-

°
i

!
5

i

d

pthread, CILK,
OpenMP

Erang,
Paralie® Haskell
skel (patterns )

SML OCami

Declaravwe

Ilf

(o% ,mpsaduir)




Building on Erlang/OTP

Scalable Infrastructure

Scalable Distributed Erlang

Q
Q)
(V)
0
W
—
C
-
0
n

The Virtual Machine




The Virtual Machine



“Are we there yet?”

A Scalability Benchmark Suite for Erlang/OTP

C BﬁnchErl D

BenchErl is a publicly available scalability benchmark suite for applications written in Erlang. In contrast to other benchmark suites, which are
usually designed to report a particular performance point, our benchmark suite aims to assess scalability, i.e., a set of performance points that
show how an application’s performance changes when additional resources (e.g. CPU cores, schedulers, etc.) are added.

MOTIVATION

The concurrency model of Erlang is one of its most advertised features. However, understanding the behaviour of a highly concurrent Erlang
application and most importantly detecting the bottlenecks that hinder the exploitation of a large number of CPU cores has not been an easy task.
A tool that would help towards this direction has been missing for Erlang.

The features included in BenchErl allow the execution of applications in various execution environments, the visualization of the results, and the

extraction of useful conclusions. Hence, it is a tool that might help the Erlang community make a first step to better understand the parameters
that affect the parallel execution of Erlang applications.

KEY FEATURES

« Unique: BenchErl is the only benchmark suite that targets the scalability of Erlang applications.

+ Configurable: BenchEr allows the configuration of a large number of parameters that might affect the execution of a benchmark. The
execution of the benchmark with all possible combinations of these parameters is handled by BenchErl.

« Automated: BenchErl handles the collection, the execution and the visual presentation of the benchmark execution results.
« Extendable: It is straightforward to add new benchmarks and applications to BenchErl.

Copyright © 2011-2014 RELEASE Project
Site generated by hakyll.




http://release.softlab.ntua.gr/bencherl/

dialyzer_bench - R15B01

) ] 1

”&“p"ssd,‘?:ilz

Server with four Intel Xeon E7340 CPUs (2.40 GHz) and 8GB of RAM running Linux 2.6.32- CLOSE x
S5-amd64 (a total of 16 cores).
Image 3 of 6




Improved VM infrastructure

Evolutionary changes in ETS storage ... and proposals for more.

Memory allocation / deallocation ... less locking ... more scalable.
Better organisation of process and port tables ... less locking needed.

More scalable internal management of processes / port signals ...
...avoiding heavy contention when much incoming + outgoing data.

Non-blocking mechanisms for loading code and setting tracing support.

Algorithm preserving term sharing in copying and message passing ...
... and its low-level implementation on the Erlang VM.

Already in R16 ... except the last.



Scalability of ETS:RI| to R16 ...

60

—+ 4 RI11B-5
—x— R13B02-1

—x— R14B
50 - R16B , -

40 .

30 =

20 =

10 |3 _

od
w - e d a ahs . b Y74

PR 1 - 3
0 | 7R I yax —== i e | i s

0 10 20 30 40 50 60 70

Figure 6. Scalability of ETS tables of type set across Erlang/OTP
releases using a workload with 99% lookups and 1% updates.



Scalability of ETS:RI| to R16 ...

80 | I | I I

—t+— RllB-S

—— R13B02-1

70 F —%— R14B ~
R16B

60

50

40

30

20

10

70

Figure 7. Scalability of ETS tables of type ordered_set across
OTP releases using a workload with 99% lookups and 1% updates.



Concurrency options R16 ...

40

35

30

25

20

15

10 |2

P Set,lno
—>— set,w
— —%— set,r
set,rw
—m— ordered_set,no
~ +—o— ordered_set,r

2,

B

B

70

Figure 11. Scalability of ETS on a workload with 99% lookups
and 1% updates when varying the ETS table concurrency options.



Scaling ETS - lessons learned

. needs to be fixed or replaced
® |ocking is (still) a problem, but got better

® NUMA is a problem

® Reader groups may be not that important

Some general advice
® Use pinning on NUMA
® Use when doing only lookups
® Use

® Measure your use case when combining them



Eating our own dog food ...

Applied the techniques of
the project to our own
systems ...

... Dialyzer,and ...

... Wrangler.

On Using Erlang for Parallelization
Experience from Parallelizing Dialyzer*

Stavros Aronis' and Konstantinos Sagonas'*

' Department of Information Technology, Uppsala University, Sweden
* School of Electrical and Computer Engincering,
National Technical University of Athens, Greece
{stavros.aronis, kostis}@it.uu.se

Abstract. Erlang is a functional language that allows programmers to employ
shared nothing processes and asynchronous message passing for parts of applica-
tions which can naturally execute concurrently. This paper reports on a non-trivial
effort 10 use these concurrency features to parallelize a widely used application
written in Erlang. More specifically, we present how Dialyzer, consisting of about
30,000 lines of quite complex and sequential Erlang code, has been parallelized
using the language primitives and report on the challenges that were involved and
lessons learmed from engaging in this feat. In addition, we evaluate the perfor-
mance improvements that were achieved on a variety of modem hardware. On
a 32-core AMD “Bulldozer™ machine, the parallel version of Dialyzer can now
complete the analysis of Erdang/OTP’s code base, consisting of about two million
lines of Erlang code, in about six minutes compared to more than one hour twenty
minutes that the sequential version (still) requires.

1 Introduction

In recent years more and more developers realize that the use of functional languages
allows for faster development, both during rapid prototyping and for deployment. Code
written in such languages is usually more succinct and can be organized and maintained
more easily than in imperative languages. The productivity of developers is therefore
enhanced and applications are also easier to maintain. On the other hand, the major ar-
guments against using functional languages focus on performance compared with im-




SD Erlang



Scalable distribution: SD Erlang

Patterns for )
interconnection. O

Semi-explicit O
process

&
deployment. )
O



Distribution “out of the box”

@

Completely
connected: all O ®
nodes connected
to each other. O O
Quadratic
complexity. ©

O

O



Throughput (successful operations)

1e+009

9e+008

8e+008

7e+008

6e+008

5e+008

4e+008

3e+008

2e+008

1e+008

0

Scalability

Scalability of distributed Erlang with different frequencies of global operation
P2P commands: spawn, RPC
Global operations: register_name, unregister_name

1 1 I |

] ! ] I I 1 ]
10 20 30 40 50 60 70 80 90

Number of nodes

100



Scalability

http://www.dcs.gla.ac.uk/~amirg/publications/ScalablePersistentStorage.pdf

Scalability benchmark
2.5e+008 T T T I T T

| |
Successful operations
variation ¢

2e+008 T .

1.5e+008

1e+008

Throughput

Se+007

|

-5e+007 : ' '
10 20 30 40 50 60 70 80 90 100

Number of nodes



Distribution “out of the box”

@

Completely
connected: all O ®
nodes connected
to each other. O O
Quadratic
complexity. ©

O

O



SD Erlang “out of the box”

Complete
connectivity within O
each s_group. @

Overlap topology O
supports nesting,

hierarchy and ad

hoc models.



Relative Speedup

1 L 1 1 L 1 1

132(1056) 140{1120) 154 160{1280) 176(1408)

1 L 1 L L 1

1(8) 10(80) 20(160) 40(320) 44 60(480) 646(528) 8640)  88(704) 100(800) 110(880) 120(960)
Number of Nodes (Cores)



Runtime (milisecond)

10000

Scalability

1 b d T T L] L} L) L) L] T T L] T L} L)
Erlang —
SD Erlang ~—
4
10(80) 20(160) 40(320) 60(480) 66(528) 80(640) &8(704) 100(800) 110(880) 120(960) 132(1056) 140(1120) 154 160(1280) 176(1408)

Number of Nodes (Cores)



S_group operations °

Create and delete s_groups.
Add and remove nodes from an s_group.

Return information about s_groups and their contents.

Register, re-register and unregister names in an s_group.

Send a message to a nhamed process.

Information about hames and whereabouts of named processes.

Based on the implementation of global groups in Erlang/OTP.



Semi-explicit placement .

Choose eligible nodes for spawn from the identified s_group.

Choose eligible nodes which have the given attribute.

Attributes include proximity, load, ... .



Getting it right 0

We built an executable operational semantics to model our
implementation.

We used property-based testing with a state machine to check
compliance between the semantics and the implementation.
Two errors in the semantic specification.

Two errors in the s_group implementation.

Two inconsistencies between the two.



Scalable Infrastructure



WombatOAM

WombatOAM is an operations and maintenance framework for Erlang
based systems.

It gives you full visibility on what is going on in Erlang clusters ...

... either as a stand-alone product or by integrating into existing OAM
infrastructure.



How it looks

-“—_j'
“ WombatOAM (beta) ™  Topology ~ Metrics  Notifications€)  Alarms€)  Help

MEATOAM

Numeric Metrics Histograms Gauges Meters Spirals Live metrics

wo_test pre-0.7.0 Metrics
Click and drag an area to zoom in
77,500k
3 wo_test@127.0.0.1 >
77,400k
wombat pre-0.7.0
77,300k
3 wombat@127.0.0.1 v R
v
S 77,200k :
S 3
Memory N g 77,100k A
Total memory @ 77.000k
Atom memory
Binary memory 76,900k
Code memory
Number of DETS tables 76,800k
ETS memory 11:30:45 11:30:50 11:30:55 11:31:00 11:31:05 11:31:10
Number of ETS tables | == total_memory
PI'OCGSS memOfy Highcharts. com
System memory
Low memory

Maximum memory

Runtime




WombatOAM

Monitor managed nodes liveliness
Group nodes by Erlang releases

Deploy Erlang releases in the cloud

Wombat architecture

-~
7

/

Erlang
~ node
\l

[
Logging If\

\
\

-

| Wombat L pu
l Topo } Metrics }\\
1:'_1
Wombat core, node &
manager, event &\
manager — —[ .
Alarms }"/

[ mnesia ] j J

_//" Erlang
' node

Gather metrics from different sources, show them in graphs

Capture logs, show error and crash logs promptly

Show alarms raised by different applications in managed nodes




Alarms in WombatOAM

Select items by:» | Actions with selected items ~ Open all

State Severity Date Source Alarm id All:[ )

2014-05-26 14:08:16 cluster-node3@10.100.0.132 {disk_almost_full,"/boot"}

<
O

new 2014-05-26 14:08:15  cluster-node2@10.100.0.132  {disk_almost_full,"/boot"}

<
O

new 2014-05-26 14:08:15  cluster-node1@10.100.0.132  {disk_almost_full,"/boot"}

<
O



Tools



Wrangler

Refactoring infrastructure

API: to write new refactorings from scratch

DSL: for “scripting” refactorings, supporting scaling
Introducing s_groups, and other parallel constructs.
Groups to s_groups.

Dog food: we've parallelised Wrangler, too.



Concuerror

“Debugging race conditions in concurrent programs is sometimes a sad story.

- Stavros Aronis

Explores all interleavings of the
processes, focusing on pairs of
n . n
racing” events ... ?

... if a process crashes, | |
Concuerror will then give you a é
detailed log of the events that C /ncuerr [
lead up to the crash.

Systematic concurrency testing of Erlang programs.

Case studies for Mochiweb and Poolboy.

http://concuerror.com

)



Percept2

Profile ... analyse ... display in a browser, enhancing Percept.

Percept: active processes vs. time, drill down to process info ...
. including runnability, start/end time, parent/child processes, etc.

Enhancements: scheduler info, process communication, run-queue
migration, runnable vs running, dynamic callgraph, links to source code,
distribution support, etc.

Scalability: scalable process tree, selective profiling, parallel analysis and
caching history webpages.



Improving VWrangler using Percept2

°
0,0

Min: 0

) 9,140 0,780 0,421 0,1 0,702 O

Max: 0

o™

L123 L2 1,40

1, Le8s 1% :

| Active Functions |

B L6071 2,008 2,98 ACBB LI X302 ATAY 1651 X790 A YN 4,071 4713 & 4,508 4, 4787 4,9 oo

1
z
|

[

i

IS0

|

| |

||

|

I

i

L

|

EE
VvV IVIVIVIVIVIV

|

-

L AL L L

1

|

L LInE a (LR Dl

111 ¢

ar
IONITR00.

C
_




Improving VWrangler using Percept2

Compare Selected Processes

) e e e e e ) R ) O

<0.0.0>

£0.3.0>" [T | ]

€0.5.0>

€0.19.0>

€0.21.0%

¢0,23.05 IO 11 I T 11 I 11 1]
<0..24. 0 0 I T e T T o e T o A T T e T T
€0.28.0> 1 T 1 I -
€0.30.0> [ T 1 T I |
€0.33.0>

0,370 (T T o o i
€0.42.0>T 1Ll T T TTT T T T T T e LI 1 1111 1 4 [ O
<0.43.0> [ T I OO O OICC OO O ]
€0.62.0> oD

£0.80.0> (I

€0.97.0> DIT0m
€0.132.0> O
<0.134.0> 1 1 11
€0.172.0> I
<0.173.0> O

[generalise and hash file ast 1(

File, Threshold,ASTPid, true,SearchPaths,TabWidth)
| |File <- Files]

para lib:pmap|(

fun(File) -> generalise and hash file ast 1(
File, Threshold, ASTPid,true,SearchPaths,TabWidth)
end, Files)




Improving VWrangler using Percept2

examine clone candidates([], Thresholds,CloneCheckerPid, Num) ->
get final clone classes(CloneCheckerPid);

examine clone candidates([C|Cs],Thresholds,CloneCheckerPid,Num) ->
output progress msg(Num),
NewClones = examine a clone candidate(C, Thresholds),
add new clones(CloneCheckerPid, {C, NewClones}),
examine clone candidates(Cs,Thresholds,CloneCheckerPid, Num+1).

d

examine clone candidates(Cs, Thresholds, CloneCheckerPid) ->
NumberedCs = lists:zip(Cs, lists:seg(l, length(Cs))),
para lib:pforeach(fun({C, Nth}) ->
examine a clone candidate (
{C,Nth}, Thresholds,CloneCheckerPid)
end, NumberedCs),
get final clone classes(CloneCheckerPid).
examine a clone candidate({C,Nth},Thresholds,CloneCheckerPid) ->
output progress msg(Nth),
NewClones = examine a clone candidate(C, Thresholds),
add new clones (CloneCheckerPid, {C, NewClones}).



https://github.com/RefactoringTools/devo



Tracing Erlang

Enhancements to Erlang tracing ... augmenting the VM
Logging only inter-node messages.
Filtering log messages.

DTrace/SystemTap support
Added probes.

Back-end for Percept2



Case studies



im—Diasca

Simulation of Discrete Systems of All Scales

Discrete simulation engine aiming for maximum concurrency ...
... with both parallel and distributed modes of operation.

It focuses notably on scalability, in order to handle simulation cases
which may be very large (potentially involving millions of interacting
instances of models).

http://researchers.edf.com/software/sim-diasca-80704.html



Port Erlang to IBM BlueGene/Q




Summing up



RELEASE

00d
00d
00d

University of Glasgow, University of Kent, Uppsala University and
|ICCS, National Technical University of Athens.

Erlang Solutions Ltd, Ericsson AB, Electricite de France.

October 201 | — February 2015

The project partners acknowledge the support of the European
Union Seventh Framework Programme (FP7/2007-2013) under

grant agreement No. 287510.



Questions!



