
PROFILING AND DEBUGGING
Erlang Systems

Roberto Aloi - Martin Kjellin

M.Sc in Computer Engineering
Working with Erlang technologies since 2007
Senior Consultant and Trainer at Erlang Solutions
Sicilian of origin, based in Stockholm

M.Sc in Computer Science, almost
Working with Erlang Technologies since 2005

Developer at Klarna

Mindset & what to look for
Useful tools & their usage
Case study of a well-known Erlang system
and maybe mild criticism?

Intro
Tools

War Story
Conclusions & QA

Contents

Profiling and Debugging?

Not enough to determine where a system spends time - why it takes
time needs to be answered too
Shared toolset for both profiling and debugging

You find - you fix!

Measure, don't guess
Trust your measurements
Measure before optimising

Know what you’re measuring

Profiling mindset

Measure!

What are we looking for?

OS Level
• Memory Usage
• Disk IO & IO Wait
• CPU usage
• Network utilisation
!

Rarely that simple… or?

Erlang VM
• Message queue
• Reductions
• (garbage collections, stack

traces, excessive bif usage …)

How do we find it?

http://www.erlang.org/doc/efficiency_guide/profiling.html
https://code.google.com/p/eper/wiki/redbug

fprof, cprof, eprof, observer, dbg, trace bifs
redbug, recon, dtop, erlgrind
htop, iostat, glances, iftop, sar, strace
and many, many more

OTP Tools
3rd party Erlang Tools

OS Tools

A misbehaving system

Database write times increases
Number of handled database writes decreases

Health check with Observer - load charts

Database write times increases
Number of handled database writes decreases

Health check with Observer - Process overview

Inspect info from Observer closer with redbug

(user@db-node)1> redbug:start(“gen_fsm:loop").
23:54:04 <{db_core_vnode,init,1}> {gen_fsm,loop,
 [<0.192.0>,<0.5143.0>,active,
 {state,
 1370157784997721485815954530671515330927436759040,
 db_kv_vnode,
 {state,
 1370157784997721485815954530671515330927436759040,
 db_kv_multi_backend,
 {state,
 [{<<"memory_multi">>,
 db_kv_memory_backend,
 {state,103678989,103547916,
 undefined,undefined,0,undefined}}, !

Code inspection showed this to be expected

System health check - htop

Average values since last invocation (or system start)
On linux, use -x and keep an eye on await (i/o op latency in ms)
Use watch: watch -n 5 iostat -x

OS Tools - iostat

Back to htop

Swap in use but large amount of free memory?

On redhat-like systems, /proc/buddyinfo holds memory fragmentation info:
Node 0, zone DMA 2 1 1 1 1 0 1 0 1 1 3
Node 0, zone DMA32 397 281 227 485 417 263 144 52 83 11 6
Node 0, zone Normal 1043 830 485 194 69 375 265 72 18 35 21
Node 1, zone Normal 2981 435 411 251 0 44 0 20 0 6 1

!
Use watch to monitor:
 watch -n5 cat /proc/buddyinfo
!!
Dropping page cache restored write performance to initial numbers.
!
!

Not all bottlenecks directly visible!

A few last words

Powerful but complex, use redbug when
debugging under load.
Profile the entire system including disk,
network & third party software
It depends - but use observer
Yes! and visualise your measurements

Trace BIFs
!

What to profile?
!

Which tools?
Measure?

Debug Read other people’s code Cry Drink Coffee Laugh Profile Learn from mistakes
Observer Redbug Is that a timer:sleep? eprof prof cprof flags dtop percept Scream
Priority Ask that guy with the beard Bugs everywhere! Nobody Knows Why Works
on my machine Pain Optimize I should have studied law instead Strace Reductions

WAR STORY
Cry Throughput My eyes hurt Everyone else is at the party 95th Percentile load
Tracing htop percept2 Graphite UI sucks Stress Test microseconds kcachegrind
Queues Expectations Metrics Latency WTF Measure It’s dark outside erlgrind
kcachegrind suspend Garbage Collection scheduler make_ref I cannot believe it

WHAT BREAKS FIRST?

System Under TestLoad Generator

Traffic

https://github.com/basho/lager

“Lager (as in the beer) is a logging framework for Erlang. Its
purpose is to provide a more traditional way to perform
logging in an Erlang application that plays nicely with
traditional UNIX logging tools like logrotate and syslog.”

- DISCLAIMER -

The problems we found were not in lager itself, but in the way lager was used

Log Manager

Log Handler 1

Log Handler 2

Log Handler 3
Client

{lager, [!
 {handlers, [!
 {lager_console_backend, info},!
 {lager_file_backend, [{file, “error.log"}, {level, error}]},!
 {lager_file_backend, [{file, "console.log"}, {level, info}]}!
]}!
]}.

Log Request

LAGER IS BASED ON GEN_EVENT

Did you know?

In the Erlang gen_event behaviour
event manager and event handlers
run within the same context

gen_event not

Manager
Handler 1

Handler 2

Handler 3

Client

gen_event yes

Manager

Client

f(e)

g(e)

h(e)
e

Lesson #1

USE
gen_event

cautiously

Avoid synchronous calls in the handlers

Use the manager as a “dispatcher”

Spawn new processes whenever meaningful

Avoid too many handlers

OR YOU MIGHT
END UP WITH…

WHY IS A BIG MESSAGE QUEUE BAD?
(Aside from the obvious reasons, such as memory consumption and having an overloaded process)

OK, THERE IS A QUEUE
IN THE EVENT MANAGER

Did you know?
In Erlang
if you send a message
to a process which has a big mailbox
you get punished

https://github.com/erlang/otp/blob/master/erts/emulator/beam/bif.c

if (erts_use_sender_punish)
 res *= 4;
else
 res = 0;

lager_event

Lager Overload Protection

log(Event) ->
 gen_event:sync_notify(lager_event, Event).

Lager 1.x

Lager Overload Protection

log(Event) ->
 case lager_config:get(async, false) of
 true -> gen_event:notify(lager_event, Event);
 false -> gen_event:sync_notify(lager_event, Event)
end;

async flag automatically toggled based on the mailbox size
async messaging used until the message exceeds async_threshold!
sync messaging used after the the threshold is passed
async messaging reverted when size is back below async_threshold - async_threshold_window

Lager 2.x

https://github.com/basho/lager/pull/113

“The problem with the current behaviour is it just pushes
the problem onto the rest of the app. Sure, you don't have
queuing in lager's mailbox, but now the rest of the app is
slowed down instead. This isn't the right tradeoff for me at
all. Logging should have minimal impact on the
performance of the rest of the system, but instead we're
effectively blocking at every log statement.”

“So, assuming you're logging at a rate faster than you can
actually write those logs to disk/syslog/whatever, your choice
is either: slow down the rest of the app to compensate or let
the mailbox balloon and have logging slow to a crawl
anyway and possibly OOM the node.”

SO WE DID SOME PROFILING.

- After stopping the load generator lot of activity is visible in htop
- Activity is restricted to one single core
- dtop shows that lager_event is busy
- no i/o wait is visible in the system

An Interesting Behaviour

A single file write operation takes 12 ms
And we have 400.000 messages to log

That’s more than 1 hour to catch up

- Most of the time is spent in file:write/2 -
!
redbug:start(“file:write->return”,
 [{print_msec, true}, {arity, true}]).

Lesson #2

THE COST OF
FILE:WRITE/2

is directly proportional to the length of the message queue
of the writing process

(at least in R15B03-1)

execute_request(Pid, Request) ->
 Mref = erlang:monitor(process, Pid),
 Pid ! {io_request, self(), Request},
 receive
 {io_reply, From, Reply} ->
 …

SELECTIVE RECEIVE

io.erl

OTP-8623 == compiler erts hipe stdlib ==
!
Receive statements that can only read out a
newly created reference are now specially
optimized so that it will execute in
constant time regardless of the number of
messages in the receive queue for the
process.
!
See gen:do_call/4 for an example of a
receive statement that will be optimized.

A WORKAROUND (the make_ref trick)

Erlang R14A (June 2010) Release Notes

THE ALTERNATIVE: A MIDDLEMAN PROCESS

Manager

file:write/2

Client

- We went from 12 ms to <1 ms per write -

https://github.com/klarna/lager_middleman_backend

https://github.com/klarna/lager_middleman_backend

PROVE IT WORKS!

File handlers (debug, warning, error)
Concurrent workers
Log messages / sec
Message size
Minutes (interrupted)

STRESS TEST SCENARIO

3
6

100
1Kb

10

- 1800 file write operation / second -

N
um

be
r o

f M
es

sa
ge

s

4500
9000

13500
18000

Seconds

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101
105
109
113
117
121
125
129
133
137
141
145
149
153
157
161
165

No Middleman Middleman

MESSAGE QUEUE GROWTH

FILE WRITE TIME
m

se
c

/ w
rit

e

0.2
0.4

0.6
0.8

Seconds

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101
105
109
113
117
121
125
129
133
137
141
145
149
153
157
161
165

No Middleman Middleman

Questions?

These guys are hiring

and there is no way back

