
Real-Time Performance at
Massive Scale

Fredrik Linder
Machine Zone, Inc.

Machine Zone

Machine Zone delivers highly engaging,
social, real-time multi-player games for

the mobile market

We are a top grossing mobile game
company

2	

Global Reach

•  One global world
•  5M-40M+ daily active users
•  100k-500k concurrent users
•  N client platforms

–  iOS
–  Android
–  Windows

•  24 x 7 x 366

3	

Global

Social 2.0

•  Defining Social 2.0
–  No language barrier
–  Global scale and reach

•  Social World Changer

–  Not just social gaming

4	

Social
2.0

Massive Scaling

•  Big Scale Architecture
–  Scaling up + out
–  Fast drives, fast network
–  Memory is cheap

•  Fully Distributed
•  Fully Redundant
•  Cluster Native

–  Automatic failover
•  Cloud Aware

5	

Massive
Scaling

What we use Erlang for

•  Real-time world updates
•  Real-time events
•  Real-time timers
•  Real-time 1-1 chat
•  Real-time group chat
•  Real-time translations
•  Real-time event processing
•  Real-time notifications

6	

Real-Time

Real-Time Translation @ Massive Scale

7	

Real-Time @ Massive Scale

8	

9	

Demo

10	

Challenges

•  Architecture support
•  Everyone

–  On the same map
–  Has the same view of game state
–  Can communicate with anyone else
–  No language barrier

•  Must feel natural
–  Real-time (soft)

•  Downtime
–  less revenue
–  less users

11	

Our approach

“If it doesn’t scale we can’t use it”
“Have performance goals”
“Always have a fallback”

1.  Measure early

–  Understand and predict growth, operational issues
and user behavior

2.  Benchmark, stress test, failover testing
–  Identify bottlenecks, ensure we can meet capacity

needs before releasing
3.  Iterate and improve

12	

An example: Real-time event processing

handle_info(#info{payload=Payload},State) ->
 {Worker,State2}=pick_worker(State),
 worker:handle_payload(Worker,Payload),
 {noreply,State2};

13	

Iteration 1 – Baseline

•  3rd party pool lib
–  One dispatcher process
–  Pool of workers

•  Queue = dispatcher and worker inboxes
–  Inbox lost on process crash
–  Dead worker may receive new msgs

•  LocalPid ! Msg

14	

Iteration 1 – Goals

•  No message loss!
•  Push-based
•  Processes should crash on failures
•  Fast
•  Linear scalability
•  Option to persist queued messages

15	

Iteration 1 - Solution

•  A few short iterations later:

•  Prioritize control messages
•  Adding a NIF queue for traffic data

–  Lock-less multi-producer-multi-consumer
–  Optionally mmap:ed to disk

•  Owned by a separate process
•  Workers pop one msg at a time
•  Off-line retries

16	

Iteration 1 - Numbers

•  NIF queue
–  half as fast as erlang:send(LocalPid,Msg)

•  Low contention
–  atomic operations

•  Scales linearly, but:
–  No timeout argument in NIF call

17	

On to other things

18	

Iteration 2 – Goals

•  Need a similar solution in another project
•  Need back-pressure
•  Need to persist queue off-host
•  Need more QoS options
•  Need to detect failing worker node

19	

Iteration 2 – Reuse

•  Broke out NIF queue + pooling into separate lib
–  A NIF is always a risk

•  New requirements superseded old ones
–  Backpressure > Speed
–  Involved processes may live on different nodes
–  Workers should still have a single payload at a time
–  Queue better live on the Erlang side

20	

Iteration 2 – Solution

[client] [dispatcher] [queue] [worker]
 : : : :

 +-call(Msg)-->| : :

 | +-call(Msg)-->| :

 | |<- - -queued-| :

 |<- - -queued-| |-call(Msg)-->|

 : : |<- - ongoing-|

 : : : |

 : : : {work}
 : : : |

 : : |<-call(done)-|

 : : |-ok- - - - ->|

 : : : :

21	

Iteration 2 – Numbers

•  11µs per request w/ 2 workers
•  11µs per request w/ 8 workers
•  11µs per request w/ 32 workers
•  13µs per request w/ 256 workers
•  17µs per request w/ 1k workers
•  31µs per request w/ 4k workers
•  90µs per request w/ 16k workers

22	

Summary

•  We knew what we needed to build
•  Solve scaling first
•  Measure and benchmark as part of dev process

•  I hope to open source soon

23	

