
Erlang in Production
Tips and tricks for running Erlang in production
11 June 2014

Jesper Louis Andersen

Introduction

The system is built, it is deployed and it seems to work.

You might have good extensive test suites. Stress tests seem to work as well.

The question is: What now ?

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

1 of 16 24/06/14 16:19

My experience only

At various customers, I have seen different kinds of situations over the years.

Many of these can be avoided with the right tooling or mindset, early on.

Erlang helps because it makes performance highly predictable, even in the presence of
system failures, but…

Ideology

If we have metrics, we can see what is going wrong

If we don't have metrics, we need to trace the live production system

It is not always the case we can reproduce the error in test

Complex systems are hazardous—it will eventually go wrong.

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

2 of 16 24/06/14 16:19

Large complex systems will fail

Systems are highly dynamic (Richard Cook)

The operating point is constantly moving

Typical things:

Developers deploy new code

A user finds a new way of using your system

Data amass over time, changing response/query times

Hardware fails

Your system relies on a distributed system, which then fails

Failures in complex systems (Cook)

Complex systems are intrinsically hazardous

Complex systems have defense in depth

They never fail due to single-points-of-failure

Complex systems always have flaws in them

They always run in degraded mode

The catastrophe is just around the corner

There is no root-cause

You can't do post-accident analysis in the right light

Human interaction is both a problem and a defense

All actions on the system is a gamble with risk factors

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

3 of 16 24/06/14 16:19

More about failure

Cook has even more information in "Why complex systems fail"

Regard your production system as a highly dynamic environment which can go wrong
at any point in time

Approach

Basic stuff: basho/lager, otp/alarm_handler, otp/os_mon

Metrics: boundary/folsom (feuerlabs/exometer)

Cascading dependencies: fuse (mmzeeman/breaky, klarna/circuit_breaker)

Overload handling: safetyvalve (uwiger/jobs, basho/sidejob)

Tracing: recon (otp/dbg, massemanet/eper/redbug)

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

4 of 16 24/06/14 16:19

Basics

Use erlang releases and configuration

The .app file can contain default configuration

Provide a standard sys.config

Do note the trick from `erl -man config`

sys.config:

 [{myapp,[{par1,val1},{par2,val2}]},
 "/home/user/myconfig"].

Target test, use this to override in production.

Would really like chubby/etcd-style configuration here!

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

5 of 16 24/06/14 16:19

Lager

Use lager as your logging framework.

Plug in handlers into lager so you can syslog, can forward log statements to other
servers, etc

Handlers are specified in the configuration. Gives your devops flexibility.

alarm_handler

The alarm_handler is very very useful.

Set and clear alarms when things go awry

Write your own alarm handler. Export alarms to Nagios or what is in your
environment.

Also write lager log statements when alarms go off

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

6 of 16 24/06/14 16:19

os_mon

Enable the os_mon application

It raises/clears alarms!

Monitors cpu usage

mem_sup is a beast! Can be configured to report if any process uses more than 5%
memory

mem_sup has caught lots of problems early on in production for me!

Metrics

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

7 of 16 24/06/14 16:19

Metrics

Metrics is a tool which tells you how a system is currently behaving

We need to be able to point fingers

Often, the error is in a cascading subsystem

Folsom

Folsom is a metric subsystem

Doesn't persist metrics, only collects them

Write a tool to push/pull metrics to other systems

Different metrics, like counters, gauges, spirals, histograms

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

8 of 16 24/06/14 16:19

Using folsom

We focus on histograms here for latency calculations. Other types are similar in
structure.

Histograms run a replacement reservoir

histogram_timed(Name, Thunk) ->
 {Time, Result} = timer:tc(Thunk),
 Diff = Time div 1000,
 _ = folsom_metrics:notify(Name, Diff, histogram),
 Result.

This will dynamically create Name, so you don't have to add it beforehand.

You can also pre-add metric types to the system.

Obtaining folsom results

Stats = folsom_metrics:get_histogram_statistics(Name),
Value = folsom_metrics:get_metric_value(Name),

Go for the percentiles in the histogram.

50th percentile (median)

95th percentile (slow queries)

99th percentile (really slow queries)

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

9 of 16 24/06/14 16:19

VM Metrics

The module is folsom_vm_metrics.

folsom_vm_metrics:get_statistics()

What to collect

EVERYTHING

Cost is low. Knowing is better than guessing!

API endpoints

Database query times

Cache hit/miss rates. Also track Type-II misses.

Every cascading subsystem

Internal heavyweight processing

File/Line/Severity log lines!

Systems I run regularly collect more than 2000 different probes

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

10 of 16 24/06/14 16:19

Tracing

Tracing / Recon

Recon is a tool by Fred Hébert

http://ferd.github.io/recon/index.html

This should be in all your production systems

recon:proc_window(reductions, 5, 100).

We want reductions from erlang:process_info(Pid)

We want the top 5 Pids

We want a window of 100ms

Can be used to find problematic processes quickly.

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

11 of 16 24/06/14 16:19

Online Tracing

Avoid printf-style debugging. Avoid excessive logging. Trace running systems when
mistakes are present.

recon_trace:calls({Mod, Fun, MatchSpec}, Max, Opts)

recon_trace:calls({erlang, now, fun(_) -> return_trace() end}, 6, [{scope, global}])

Traces erlang:now() for up to 3 calls (there are two messages per call)

The scope can also be local useful for non-exported functions

Low impact on the system. Can be used in production. The Max is an overload protector.

Cascading dependencies

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

12 of 16 24/06/14 16:19

Scenarios

Typical scenarios:

Nuclear power plants

Finance

Medical equipment

Circuit breakers

Install a fail-safe against the problem. Use this to trigger if the problem occurs. For
software:

Databases

Systems over which we have no control

Frequently failing systems

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

13 of 16 24/06/14 16:19

Characteristics

No resource buildup in the Erlang system.
- Quick response on failure, close to 4µs.
- Clients can discriminate long processing time from genuine known failure.
- Excellent place for monitoring

Fuse

Fuse implements the circuit breaker pattern

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

14 of 16 24/06/14 16:19

Using

-define(FUSE_RESET, reset_fuse).
reset_test(_Config) ->
 ct:log("Installing a fuse, then resetting it should clear out timers"),
 ok = fuse:install(?FUSE_RESET, {{standard, 2, 60}, {reset, 5000}}),
 ok = fuse:ask(?FUSE_RESET, sync),
 ok = fuse:melt(?FUSE_RESET),
 ok = fuse:melt(?FUSE_RESET),
 ok = fuse:melt(?FUSE_RESET),
 blown = fuse:ask(?FUSE_RESET, sync),
 ok = fuse:reset(?FUSE_RESET),
 ok = fuse:ask(?FUSE_RESET, sync),
 3 = proplists:get_value(one, folsom_metrics:get_metric_value('reset_fuse.melt')),
 2 = proplists:get_value(one, folsom_metrics:get_metric_value('reset_fuse.ok')),
 1 = proplists:get_value(one, folsom_metrics:get_metric_value('reset_fuse.blown')),
 ok.

Overload handling

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

15 of 16 24/06/14 16:19

Goto

goto other slide deck :)

Thank you

Jesper Louis Andersen
http://erlang-solution.com (http://erlang-solution.com)

@jlouis666 (http://twitter.com/jlouis666)

Erlang in Production http://127.0.0.1:3999/euc-2014-tutorial.slide

16 of 16 24/06/14 16:19

