SOLUTIONS

Thinking in a Highly Concurrent,
Mostly-functional Language

Chicago Erlang
Chicago, September 22" 2014

Francesco Cesarini

Founder & Technical Director

@francescoC
francesco@erlang-solutions.com

G

Erlang Training and Consulting Ltd

Thinking in a Highly Concurrent,
Mostly-functional Language

QCON London, March 12th 2009

Francesco Cesarini

francesco@erlang-consulting.com

counter_loop(Count) ->
receive
increment ->
counter_loop(Count + 1);
{count, To} ->
To ! {count, Count},
counter_loop(Count)
end.

Erlang &

© 2014 - Erlang Solutions Ltd

SOLUTIONS

After you’ve opened the top of your head,
reached in and turned your brain inside out,
this starts to look like a natural way to count
integers. And Erlang does require some fairly
serious mental readjustment.

However... having spent some time playing with
this, | tell you...

Tim Bray, Director of Web Technologies - Sun Microsystems

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

... If somebody came to me and wanted to pay
me a lot of money to build a large scale message
handling system that really had to be up all the
time, could never afford to go down for years at the
time, | would unhesitatingly choose Erlang to build

it in.

Tim Bray, Director of Web Technologies - Sun Microsystems

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

© 2014 - Erlang Solutions Ltd

SOLUTIONS

Concurrency

SSSSSSSSS

Erlang Highlights: Concurrency

Creating a new process using spawn

-module (ex3) .
—-export ([activity/3]).

activity (Name, Pos,Size) ->

oooooooooooo

activity (Joe,75,1024)

\ 4

Pid = spawn (ex3,activity, [Joe,75,1024])

© 2014 - Erlang Solutions Ltd

SOLUTIONS

Erlang Highlights: Concurrency

Processes communicate by asynchronous
message passing

receive
{start} -> ...
{stop} —-> ...
{data,X,Y} =-> ...

end
Pid ! {data,12,13}

© 2014 - Erlang Solutions Ltd

Products: AXD301 Switch - 1996

A Telephony-Class, scalable (10 -
160 GBps) ATM switch

Designed from scratch in less than
3 years

AXD 301 Success factors:
= Competent organisation and people
= Efficient process
= Excellent technology (e.g. Erlang/OTP)

© 2014 - Erlang Solutions Ltd

Products: AXD301 Switch

Erlang: ca 1.5 million lines of code
= Nearly all the complex control logic
» Operation & Maintenance

= Web server and runtime HTML/
JavaScript generation

C/C++: ca 500k lines of code

= Third party software
= Low-level protocol drivers
= Device drivers

Java: ca 13k lines of code
= Operator GUI applets

© 2014 - Erlang Solutions Ltd

SOLUTIONS

Concurrency Modeling

Example: AXD301 process model

Model for the natural 15t prototype:

concurrency in your problem S-S 6 processes/call
.

In thg old days, processes were e 2 processes/call

a critical resource 5B

= Rationing processes led to complex and O

unmanageable code 1 process/all calls

ae
Nowadays, processes are very O © 2 processes/
cheap: if you need a process - \Q/ call transaction
create one! I S
\f 4-5 processes/

call transaction

© 2014 - Erlang Solutions Ltd

SOLUTIONS

1+1 Redundancy - Good ol’ Telecoms

~ 35 000 calls No ongoing sessions

per processor pair Stable-state lost at “failover”
replication

——

Active Standby

Control plane

Control signalling

Data path

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

First IM Proxy Prototype - 2000

sockets

multiplexing de-multiplexing
state/error handling ‘—».—»‘

de-multiplexing /v‘ /‘ multiplexing
sockets w ’ listener

users

© 2014 - Erlang Solutions Ltd

EEEE

L
11 / f

T L = =

|

111 / f

jsaz=== A ;
{

L
—
R | R RRARR |
| aasi IRERRRE |
1 Amamman ¥

ImE|
0 EEE)k
4 4

SSSSSSSSS

First IM Proxy Prototype - 2000

sockets

Sl

Ipervisor

multiplexing

]
‘\

state/error har

simple 1-1

de-multiplexin

g

dling // 0
/

multiplexing

sockets

users

© 2014 - Erlang Solutions Ltd

tener

’ lis

E [IIE

SSSSSSSSS

Products: EjabberD IM Server - 2002

A distributed XMPP server ‘ Process one

Started as an Open Source
Project by Alexey Shchepin

Commercially Supported by '
Process-One (Paris) f‘.e.]abberd |

the Erlang Jabber/XMPP da

= 40% of the XMPP IM market \ convgrty S He

= Used as a transport layer
= Managed 30,000 users / node

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

Products: EjabberD IM Server - 2002

A distributed XMPP server ‘ pFOCESS

Started as an Open Source e
Project by Alexey Shchepin

Commercially Supported by '
Process-One (Paris) P’ejabberd |

the Erlang Jabber/ XMPP daemo

= 40% of the XMPP IM market \ Hy Site

= Used as a transport layer
= 2008, Managed 30,000 users / node

MongooselM is a fork and rewrite 2 1%
= Open Source, supported by Erlang Solutions
= Used for Messaging and Device Management MONGOOSEIM

2014, managed 1 million users / node W
© 2014 - Erlang Solutiohs Ltd

SSSSSSSSS

Fully Replicated Cluster - Ejabberd 2002

Client must re-connect
if one of its session

handlers dies e @
S2S
muc C2s muc
~ S2S S2S
O
< c2s c2s
& |
'g \ sm Sm
g e

I /Fully replica‘ted\‘

- Mnesia database

© 2014 - Erlang Solutions Ltd

Share-nothing Architecture - Messaging Gateway

57 S AOL e

Mail Servers
IMAP/POP3/SMTP

R talk>’

=

XMPP

. N
Jen

1 WV I IMPS =
IMAP/SMTP

MSP 2
Windows Live

WL Messanger

© 2014 - Erlang Solutions Ltd

SOLUTIONS

Share-nothing Architecture - Messaging Gateway

\ /S N /N SN/

Router/FE Router/FE Router/FE Router/FE

/7%4&\

IMAP

MAP
IMAP POP
tu

y‘@\ SMTP ~=ne(TP

\-IATTP
HTTp \,\'ﬁ?
© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

SMTP

Erlang Concurrency Under Stress - Pre-SMP

100% CPU
A 1
1
1
1
1
'U 1
cC 1
o |
(@) |
()] 1
w 1
~ I
- 1
- | 1
Q_ 1
£ 1
on 1
= |
(o) 1
| - |
L 1
- [)
I - Line 1 Balanced Erlang System
1
: Line 2 Erlang System with bottle necks
1
1
1

>
Simultaneous Requests

© 2014 - Erlang Solutions Ltd

SOLUTIONS

Erlang Concurrency Under Stress - Pre-SMP

300

' 'plot—gau;s-disk—long.ﬂ' —
'plot-apache-250thr-disk' —+—

800 YAl T

700 B

EOO |

YAWS Thr0ughpUt 500 |

(KBytes/second)

400

300 }

200 F

100

0

0 10000 20000 30000 40000 50000 E0000 70000 80000 90000

Simultaneous Requests

© 2014 - Erlang Solutions Ltd

SOLUTIONS

Erlang Concurrency Under Stress - Post-SMP

SSSSSSSSS

Stress Tests With SMP

|/0 Starvation

TCP/IP Congestion
Memory Spikes

Timeout Fine-tuning

OS Limitations

ERTS Configuration Flags
Shut down Audit Logs

© 2014 - Erlang Solutions Ltd

SMP bottlenecks - pre 2008

Erlang VM
1]

[Scheduler #1 run queue
p

[Scheduler #2
»
]

[Scheduler #N
D

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

““H“\HHHH

SMP bottlenecks - post 2008

Erlang VM o
Scheduler #1 run queq_ej\A
, mig;ation
Scheduler #2 run queue \\| Iogic
— =
_J

Scheduler #N run queue

—

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

Big Bang Benchmark - post 2008

Speedup
I
=) -
multi_g _
I
I
I
15, 00 -
5, 00 -

1 ! !
20,00 #Schedulers 40, 00 60, 00

Red: Single Queue, Blue: Multple Run Queue on a Tilera TilePro64 (64 cores)

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

Mandelbrot- 2013

o
I
S
ot
©

B

©

O

16,000,000

12,000,000

8,000,000

4,000,000

Mandelbrot throughput

15

30

Cores

45

B Stock
B Concurix Aug 8
[Concurix June 25

Now for the Bottlenecks

DOWNLOAD V084 3,

Build your next website with Erlang —
the world’s most advanced networking
platform.

Do you pine for a simpler time when web page: 3ged In unger or
second? Chicago Boss is the answer to slow server soft

framework for Erlang that delivers web pages 1 -
efficient V' asS possiDie

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

Now for the Bottlenecks

> Chicago Boss scaling

1200 ,
<UL . P ——
VOoPUT<C

900 B
L !
]
v
~ o
v 500
-
o
v

300

n o= -. > - -
< 18 3 4

Scheduiers

© 2014 - Erlang Solutions Ltd

SOLUTIONS

Now for the Bottlenecks

Gen_server
The gen_server can

become a serialization
bottleneck, particularly
ott with
gen server:call(..)

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

Now for the Bottlenecks

WWW. CONCUrix.com

° L
© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

Now for the Bottlenecks

Tons of
headroom

still!

Chicago Boss scaling

1200 B Unoptmeea
B Caching «
D afarts
‘30[\ H-‘a.:!r’g

@ —
w
» 500
b
-
=
300
0
4 18 3 g
Scheouiers

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

Riak and other scalable architectures

2160

/ 0
) \ /a single vnode/partition

/ node 0
\ a ring with 32 partitions «2160/4

\ /
2I610/2

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

hode 2

node 3

AN

hash(<<"artist">>,<<"REM">>)

N/R/W Values

/ \ put(<<"artist">>,<<"REM">>)

(N=3)

\ ;
©201tErtang'Solutions Ltd w

SOLUT/IONS

N/R/W Values

/ \ _ get/put("artist", "REM",
R/W=2)

\(ok, Object}

/
©201tErlang'Solutions Ltd W’

SOLUT/IONS

Clusters and SD Erlang

« TWOMAJORISSUES
o FULLY CONNECTED CLUSTERS
o EXPLICIT PROCESS PLACEMENT

« SCALABLE DiSTRIBUTED (SD) ERLANG

« NODES GROLPING

« NON-TRANSITIVE CONNECTIONS

« |MPLICIT PROCESS PLACEMENT

« PART OF THE STANDARD ERLANG/OTP PACKAGE
« NEW CONCEPTS INTRODUCED

« LOCALITY, AFFINITY AND DISTANCE

© 2014 - Erlang Solutions Ltd

1)
[}
1

\

ma—

Z]
-l‘
N

"
5
:'
S
'«%' N
%
o
2

S
S

<)

W/

=5/
RS op
|\
ALK
e
0\ NXE
Aa")' ‘
AN
LT
VS
(X
A\

AR
L
Ve v

RS </

\f
‘ "
SIS
/Y <
e .5.0 :
\\\‘ ,,/,P

-

J

L/
",

()

(]
< ;(‘!4"“';
Y72
e ':‘.‘-‘;\\!,'/7
O\ |77
\\\‘I lJ ,//,

e

G1 G2

SOLUTIONS

Release Statement of Aims

“To scale the radical concurrency-oriented
programming paradigm to build reliable
general-purpose software, such as server-
based systems, on massively parallel
machines (10”5 cores).”

¢
< €DF
HERIOT ’
SOLUTIONS ERICSSON

© 2014 - Erlang Solutions Ltd

SEVENTH FRAMEWORK
PROGRAMME

:iRELEASE

University of

Kent

UPPSALA
UNIVERSITET

&l

SSSSSSSSS

Release

“Limitations exist on all levels. You would not
want an Erlang VM to run with 10”5
schedulers.”

WP2 Virtual Machine

WP4 Scalable Infrastructure %
(o))
——————————————
30 ¢
WP3 SD Erlang Language S o
7))
Q.
D
w
R

© 2014 - Erlang Solutions Ltd

SEVENTH FRAMEWORK
PROGRAMME

:tRELE

SOLUTIONS

Release

Push the responsibility for scalability from the programmer to
the VM

Analyze performance and scalability

|ldentify bottlenecks and prioritize changes and extensions
Tackle well-known scalability issues

Ets tables (shared global data structure)

Message passing, copying and frequently communicating
processes

© 2014 - Erlang Solutions Ltd W

SSSSSSSSS

Designing for

Scalability with

Thank You! BE=225
O FAULT-TOLERANT SYSTEMS '

@francescoc
francesco@erlang-solutions.com

Francesco Cesarini & Steve Vinoski

© 2014 - Erlang Solutions Ltd

SOLUTIONS

