Cool Kids <3 Erlang

Erlang and the Bitcoin blockchain

Erlang Factory Light Berlin 2014

SO O O O O

Talk

Money
Start Ups
Bitcoin
Erlang

... all of that, shaken (not stirred).

“Do you understand
7))
money:

Money is debt.

Money is debt.

[s it!

Money

With us for 5,000 years:
O Coins
O Notes
O Cards

O Crypto

Money

O Yap Stones

O Money in Games

O Bread Winning & Rent Taking

Money's a matter of functions four,

A Medium, a Measure, a Standard, a Store.

Scarcity
Durability
Portability
Divisibility
Verifiability
Storability
Fungibility
Protectibilty
Adoption

Moneylitility

Bitcoin
O digital
O decentralized

O trustless

Ledger and payment system.

Bitcoin
released in 2009

$370 per bitcoin ca. market cap $5 billion

accepted by ca. 80,000 merchants. 1-2 million users.

more than $400 million VC money in 2014.

Bitcoin
How can that have value?
O Scarcity

O No central bank

O logarithmic inflation by protocol
2014: 13.5 million bitcoins.
2025: 20 million.
2140: 21 million (max).

tens of thousands of times
mirrored in the cloud

BLOCKCHAIN

Binary Cash

To be able to spend an unspent transaction, i.e. the money, the

owner has a secret, digital key. These Kkeys are conveniently
managed by the wallet.

Each time a new transaction 1is initiated, the secret key to an
unspent transaction is used to sign a new transaction.

Since only the owner of a transaction has its secret key, only she
can sign it, i.e. spend it.

A

The wultimate beauty 1is that the secret keys effectively are the
cash.

Paying with Bitcoins

O Paying to another person is
facilitated by your wallet software
creating and signing a new transaction to
another person.

O The new transaction is broadcast to
the network.

OThere is no direct communication
between the wallets.

O The wallet of the other person will
see the new transaction and increase the
wallet balance.

O An unspent transaction of yours is now
sent, so your wallet will show a lower
balance.

O There are no aggregate account balance
figures in the blockchain, only
transactions.

{'" 1? T
b

jﬁ
5;:' ~,'Jt f;%,lf -

Start Up!

O Insurances
=> Sport Bets

=> World Cup!

The Project

O make a bet
~» invite a friend
-» friend enters a bet

-» bet is decided

~» money is cashed out

Multi-Signature Transactions

O Every transaction can have multiple parties paying into it, and
multiple parties receiving the money.

O A transaction can also be constructed to require multiple keys
to spend it. Such are called multi-signature transactions and are
similar 1in function to a bank account that needs more than one
signature to spend from. It's the same principle but with
unprecedented, finer granularity, allowing for new business
models.

O Multi-signature transactions can also be constructed to be
spendable when only two out of three keys are present.

O For a multi-signature transaction, when the keys are known by
separate people exclusively, then they own the Bitcoins
collectively. no-one can spend the transation, i.e. the money, on
its own.

Oracles

O Oracles provide facts expressed as cryptographic keys.

O Such oracle keys can be used to create escrow keys, which can
unlock and spend micro-contracts as described, independently of
the bet parties and the provider of the betting contract, Betwarp.

O Oracle services do not generally know about a contract being
based on their service. They publish keys of real world events as

a one-way service. They publish only one set of keys per event,
not dealing with individual contracts.

O We are working with the leading oracle key provider, Mr Edgar,
to establish an economy with independent event arbiters. Thus, 1in
effect the information, and the escrow key expressing who wins a
bet, are provided independently of us.

Micro Betting Contracts

O Betwarp facilitates bets by creating a micro-contract between the
betting parties where they lock 1in bitcoin which can be unlocked
only with the aid of an oracle.

% \ A B
II:.__!E:"»:?{,’E% “l I L

paying in

Oracle gives A

" \I A the 2nd signature
-
B) ”2 S=|m| 4 A

O This 1is a standard Bitcoin 2-out-of-3 transaction, where each

party holds one secret key. When the oracle reveals the winning key,
the winner cashes in.

Double Enryption

O Betwarp refines the
oracle keys, prior to
creating a bet.

O A winning key 1is created
that is then encrypted with
the oracle keys, Yes and
No.

O The result 1is then
encrypted again, using the
parties' public keys.

O For the mobile apps, the
S e KEeNVES g i eSSt ot
[ECNGEERIS VR G O S LSS DEUEE
rather, created 1in the app
we provide, 1literally in
the hands of the user, on
his mobile device.

Public Keys

oo

V Private Key
Prlvate Public ra C le Public Private

key key key key

User A Public key User B Public key

l l

O,

2T P

Yes! No!

Double Enrypted Key Provision

O The winner can unlock the
secret winning key - which 1in
turn unlocks the micro-
contract - with the help of
FiEnssaciFetarkiey: tihat" the
oracle publishes after the
outcome of the event the bet
referred to.

g

3 =0
O Neither BetWarp nor the Yes! Public

oracle ever have access to key
the secret keys of the
betting parties.

-~

User A
Public key

O For delivery another
encryption layer 1is added to
make sure that no-one can
steal the Kkeys once the
oracle key 1is published.

The First Attempt

O use Java
O battle-tested, widely used, great library

O stuck with special cases

O O O O

Erlang to the Rescue

crashes don't pollute state
retries often succeed
all code in front of you

bit-syntax for the win

© Can Stock Photo Inc. / 3DClipArtsDE

The Second Attempt

O use Erlang

O parse bits on protocol level

O 500 lines of code

<<]

—_
-—

/ersion/binary,

PrevoutPutT :
%ndeg : izéliﬁiz?{iiégﬁes’

varin te si : > . .
GiverSc r('igtsfz}.ﬁr(\g;frscrlptSlg)))/bmary’
Seql/binary,
PrevOutPutTxHash2:32/bytes,
Index2:32/1ittle-1integer, | |
(va r’tnt(byte_size(TakerScriptslg)))/bxnary,
TakerScriptSig/binary,
Seq2/binary,
ng/binary

>>,

-)
OutputAddrHash/t
?0OP_EQUALVERIFY

. ?0P_CHEC)
UnsignedT3 = _CHECKSIG>>,

<<?TX_VERSION/binary,
16#01, %% Tx input count
(mw_1lib:rev_bin(FinalT2Hash))/binary,

16#00:32/1ittle-integer, %% 72 has a St
(varint(byte_size(ScriptPubkey)))/binary
ScriptPubkey/binary,

2TX IN_SEQ/binary,

16#01, %% Tx output count

: ' -integer,
tAmount.64/11tt1e in 5
Oggggnt te_size(OutputScrt

nature_der(<<16#5u,
_Totallens
16#02,

RLen,
_RZRLen/byteS ,

bitcoin_sig

4/bytes, aitle
se_ block_ header(<<Fler:§g?E£ng/h 32/1nteger 'L.Ltt -

“Version:32/integer- little,
“HashPrevBlock:32/bytes,
_HashMerkleRoot:32/bytes,
Time:32/integer - httle
Targetleflculty 32 /b'Lts

N 'Ln e
R/blnary>> o B%gg .sl.)Ltt.l,e

par

InputBlﬁ ZS(IDDUts) -

1 t X .

(mw_Lib: rev_bin(OutPointTxHashy) birer,
OutPointIndex:32/little-integer,
(Varint(byte_size(InpU‘tScr}BE)))/blnary,
InputScript/binary, %% scriptf
2TX_IN_SEQ/binary

. ts:

make_raw_ Inputs(Inputs) ->
InputBin i
fun({OutPomtT\Hash, outPointIndex, “’j”fscrlpt _V81UE}

<<
(m' lib:rev
OutPo t

5
end,

(binary:list_to bin(1list
| . S

self(), ~ Part3, Parts],

SPawn = fun(l) .
:) => spawn_ 14
.Ig;:tf.foreﬁaCh(Spawn? PaFl;;k(fun() "> query_txs(L, AddrHash, pi
e peareceive_results(3), e
& = Ositimestamp(), '
I}me ="t1mer:now_diff(T:, T1)
2info(query_address_1in mempoél

. ON ~p txs: ~ 1
[TxCount, Time div 1000]), P txs: ~p ms

)

Res.

query_txs([], _AddrHash, Pid) ->
Pid ! done;
query_txs([TxHash | TxHashes], AddrHash, Pid) ->
TxHex = get_bitcoind_tx(TxHash),
case query_addrhash_in_t-'(AddrHash, TxHex) of
not_found -> _
query_txs(TxHashes, AddrHash, Pid);

{found, 00} ->
pid ! {found, 00}

end.

results(ProcsLeft) ->
eive

e1ve

f
case Procsteft of
> not_foundi_ es(prossteft - *

hYbrid_aes

rs .
%% ToDO - 33??§(P1a1ntext, RSAPUbKe
%% to b ate entropy Solrcet y) -

= U : W
AESKey = Cr)rl;tg{):tffs Key is cryptac il Hant to b
X% PKCS #7 padding; voT,nd-byte

s, value ; :
%% Of the flmbar of paddingfbf/ct]‘gz_/mddmg byte is the inte

: -z ' We align to 1g 5 ger representation
PaddinglLen = 16 - (byte_S'Lze(Plaintext) rem 16), Ve

Padding =.binary:copy(<§PaddingLen>>, PaddingLen),
P@ddedPla'Lntext = <<Plaintext/binary, Padding/binary>>,
Ciphertext = crypto:block_encrypt(aes_cbci2s, AESKey,
?DEFAULT_AES_IV, PaddedPlaintexS),
OAEP as 1it's supported by Tom Wu's rsa2.js (RSADecryptOAEP)
;6;’:/ /ijiip'//en wikipedia.org/wiki/optimal Asymnetric_Encryption_Padding
(] . '

s, Exponent} = RSAPubkey, ’
_RecordName, Mozu}uublicpencrypt(rsa’ AESKey, [Expggc.entS Modulus]
EncAESKey = crypto:p % rsa_pkcs1_oaep_padding),

it the loose
' i : £ the binary in case 1t's Of
il - refix to identify t!
) 5{ }[b)’f] ,ﬁ’;i”iﬁ Zﬁiﬁ(?écINARY_PREFIX))/ binary,
<< I'IW_ 1D. e i
creREskey/bineTy,
Ciphertext/bina

ZOC/(for /d
all ev/randonm

“Is it — possible that the

world, at large, does not

get the awesomeness of
Erlang?”

