
Monitoring
Complex Systems

Keeping Your Head on Straight
in a Hard World

I do things to/with
computers.

I build real-time
systems.

I build fault-
tolerant systems.

I build critical
systems.

AdRoll

Less this.

More this.

Engineering + Mathematics = ads

Engineering + Mathematics = ads

(you’re welcome)

R E A L - T I M E
B I D D I N G

The Problem Domain
• Low latency (< 100 ms per transaction)

The Problem Domain
• Low latency (< 100 ms per transaction)

• Firm real-time system

The Problem Domain
• Low latency (< 100 ms per transaction)

• Firm real-time system

• Highly concurrent (~2 million transactions
per second, peak)

The Problem Domain
• Low latency (< 100 ms per transaction)

• Firm real-time system

• Highly concurrent (~2 million transactions
per second, peak)

• Global, 24/7 operation

I build
Complex Systems

Complex Systems

• Non-linear feedback

• Tightly coupled to external systems

• Difficult to model, understand

Bad things happen when
Complex Systems fail.

Humans are bad at predicting the
performance of complex systems(…).

Our ability to create large and
complex systems fools us into

believing that we’re also entitled to
understand them.

C A R L O S B U E N O
“ M AT U R E O P T I M I Z AT I O N H A N D B O O K ”

Complex Systems often
create worse problems
than those they solve.

The key challenge to
sustaining a complex

system is maintaining our
understanding of it.

What can be done?

Compile-time guarantees
are not sufficient.

don’t scrimp on them, though

Compile-time guarantees
are not sufficient.

Ahead of time verification is
not sufficient.

don’t scrimp on these, either

Ahead of time verification is
not sufficient.

We need insight into the
running system.

• VM killers

What are we looking for?

• VM killers

• Application performance regressions

What are we looking for?

• VM killers

• Application performance regressions

• Abnormal application behavior

What are we looking for?

• VM killers

• Application performance regressions

• Abnormal application behavior

• Surprises

What are we looking for?

INSTRUMENTATION

BEAM is ready to play.

erlang:memory/1

erlang:memory/1

• ets

• binary

• atom

• total

• processes

• system

erlang:statistics/1

erlang:statistics/1

• run_queue

• garbage_collection

• io

erlang:system_info/1

erlang:system_info/1

• port_count

• process_count

• *_limit

What about
our own work?

Exometer

Important Terms
metric a measurement

entry a receiver and aggregator of metrics

reporter that which samples entries periodically
and ships them to another system

subscription the definition of the regular interval on
which reporters sample entries

exometer
• Responsive upstream (Ulf Wiger never sleeps?)

• Metric collection, aggregation and reporting
decoupled.

• Static and dynamic configuration.

• Very low, predictable runtime overhead.

Defining Entries
{predefined, [
 {[erlang,memory],
 {function, erlang, memory,
 ['$dp'], value,[ets,binary]},
 []
 },

 {[erlang, statistics],
 {function, erlang, statistics,
 ['$dp'], value, [run_queue]},
 []
 },

{[erlang, gc],
 {function, erlang, statistics,
 [garbage_collection], match,
 {total_coll, rec_wrd, '_'}},
 []
 },

 {[boodah, freq_cap, not_found], spiral},
 {[boodah, freq_cap, ok], spiral},
 {[boodah, freq_cap, timeout], spiral}
]},

{predefined, [
 {[erlang,memory],
 {function, erlang, memory,
 ['$dp'], value,[ets,binary]},
 []
 },

 {[erlang, statistics],
 {function, erlang, statistics,
 ['$dp'], value, [run_queue]},
 []
 },

{[erlang, gc],
 {function, erlang, statistics,
 [garbage_collection], match,
 {total_coll, rec_wrd, '_'}},
 []
 },

 {[boodah, freq_cap, not_found], spiral},
 {[boodah, freq_cap, ok], spiral},
 {[boodah, freq_cap, timeout], spiral}
]},

Defining Entries

{predefined, [
 {[erlang,memory],
 {function, erlang, memory,
 ['$dp'], value,[ets,binary]},
 []
 },

 {[erlang, statistics],
 {function, erlang, statistics,
 ['$dp'], value, [run_queue]},
 []
 },

{[erlang, gc],
 {function, erlang, statistics,
 [garbage_collection], match,
 {total_coll, rec_wrd, '_'}},
 []
 },

 {[boodah, freq_cap, not_found], spiral},
 {[boodah, freq_cap, ok], spiral},
 {[boodah, freq_cap, timeout], spiral}
]},

Defining Entries

{predefined, [
 {[erlang,memory],
 {function, erlang, memory,
 ['$dp'], value,[ets,binary]},
 []
 },

 {[erlang, statistics],
 {function, erlang, statistics,
 ['$dp'], value, [run_queue]},
 []
 },

{[erlang, gc],
 {function, erlang, statistics,
 [garbage_collection], match,
 {total_coll, rec_wrd, '_'}},
 []
 },

 {[boodah, freq_cap, not_found], spiral},
 {[boodah, freq_cap, ok], spiral},
 {[boodah, freq_cap, timeout], spiral}
]},

Defining Entries

{predefined, [
 {[erlang,memory],
 {function, erlang, memory,
 ['$dp'], value,[ets,binary]},
 []
 },

 {[erlang, statistics],
 {function, erlang, statistics,
 ['$dp'], value, [run_queue]},
 []
 },

{[erlang, gc],
 {function, erlang, statistics,
 [garbage_collection], match,
 {total_coll, rec_wrd, '_'}},
 []
 },

 {[boodah, freq_cap, not_found], spiral},
 {[boodah, freq_cap, ok], spiral},
 {[boodah, freq_cap, timeout], spiral}
]},

Defining Entries

{ reporters,
 [
 { exometer_report_statsd,
 [
 {hostname, "localhost"},
 {port, 8125},
 {type_map,
 [
 {[erlang,statistics,run_queue],
 histogram},
 {[erlang, gc, tot_coll], histogram},
 {[erlang, gc, rec_wrd], histogram},

 {[erlang,memory,ets], gauge},
 {[erlang,memory,binary],gauge},

 {[boodah,freq_cap,not_found],gauge},
 {[boodah,freq_cap,ok],gauge},
 {[boodah,freq_cap,timeout],gauge}
]},

Defining Reporters

{ reporters,
 [
 { exometer_report_statsd,
 [
 {hostname, "localhost"},
 {port, 8125},
 {type_map,
 [
 {[erlang,statistics,run_queue],
 histogram},
 {[erlang, gc, tot_coll], histogram},
 {[erlang, gc, rec_wrd], histogram},

 {[erlang,memory,ets], gauge},
 {[erlang,memory,binary],gauge},

 {[boodah,freq_cap,not_found],gauge},
 {[boodah,freq_cap,ok],gauge},
 {[boodah,freq_cap,timeout],gauge}
]},

Defining Reporters

{ reporters,
 [
 { exometer_report_statsd,
 [
 {hostname, "localhost"},
 {port, 8125},
 {type_map,
 [
 {[erlang,statistics,run_queue],
 histogram},
 {[erlang, gc, tot_coll], histogram},
 {[erlang, gc, rec_wrd], histogram},

 {[erlang,memory,ets], gauge},
 {[erlang,memory,binary],gauge},

 {[boodah,freq_cap,not_found],gauge},
 {[boodah,freq_cap,ok],gauge},
 {[boodah,freq_cap,timeout],gauge}
]},

Defining Reporters

{ report,
 [
 { subscribers,
 [
 {exometer_report_statsd, [erlang, statistics],
 run_queue, 1000},

 {exometer_report_statsd, [erlang, gc],
 tot_coll, 1000},
 {exometer_report_statsd, [erlang, gc],
 rec_wrd, 1000},

 {exometer_report_statsd, [erlang, memory],
 ets, 10000},
 {exometer_report_statsd, [erlang, memory],
 binary, 10000},

 {exometer_report_statsd,
 [boodah, freq_cap, not_found], one,
1000},
 {exometer_report_statsd,
 [boodah, freq_cap, ok], one, 1000},
 {exometer_report_statsd,
 [boodah, freq_cap, timeout], one, 1000}
]}
]}

Defining Subscriptions

{ report,
 [
 { subscribers,
 [
 {exometer_report_statsd, [erlang, statistics],
 run_queue, 1000},

 {exometer_report_statsd, [erlang, gc],
 tot_coll, 1000},
 {exometer_report_statsd, [erlang, gc],
 rec_wrd, 1000},

 {exometer_report_statsd, [erlang, memory],
 ets, 10000},
 {exometer_report_statsd, [erlang, memory],
 binary, 10000},

 {exometer_report_statsd,
 [boodah, freq_cap, not_found], one,
1000},
 {exometer_report_statsd,
 [boodah, freq_cap, ok], one, 1000},
 {exometer_report_statsd,
 [boodah, freq_cap, timeout], one, 1000}
]}
]}

Defining Subscriptions

{ report,
 [
 { subscribers,
 [
 {exometer_report_statsd, [erlang, statistics],
 run_queue, 1000},

 {exometer_report_statsd, [erlang, gc],
 tot_coll, 1000},
 {exometer_report_statsd, [erlang, gc],
 rec_wrd, 1000},

 {exometer_report_statsd, [erlang, memory],
 ets, 10000},
 {exometer_report_statsd, [erlang, memory],
 binary, 10000},

 {exometer_report_statsd,
 [boodah, freq_cap, not_found], one,
1000},
 {exometer_report_statsd,
 [boodah, freq_cap, ok], one, 1000},
 {exometer_report_statsd,
 [boodah, freq_cap, timeout], one, 1000}
]}
]}

Defining Subscriptions

1> exometer:new([a, histogram], histogram).
ok

2> exometer:get_value([a, histogram]).
{ok,[{n,0},
 {mean,0},
 {min,0},
 {max,0},
 {median,0},
 {50,0},
 {75,0},
 {90,0},
 {95,0},
 {99,0},
 {999,0}]}

3> exometer_report:add_reporter(
 exometer_report_tty, []).
ok

4> exometer_report:subscribe(
 exometer_report_tty,
 [a, histogram], mean, 1000, []).
ok

exometer_report_tty: a_histogram_mean
1393627070:0
exometer_report_tty: a_histogram_mean
1393627071:0
exometer_report_tty: a_histogram_mean
1393627072:0

Doing it dynamically.

These are all loosely
coupled at runtime.

Configuration is static, but
you can adapt it on the fly.

Creating Reporters
•Very easy to add your own reporters and

entries.

•Reporters and entries can be proprietary.
Just have to be loaded at runtime.

•Authors are responsive to issues.

Why not…

…folsom?
…statman?

…vmstat?

Okay, great. We have
instrumentation.

Now what?

MONITORING

This is the
hard part.

Visualization

Alerting

Analysis

Visualization tells you
how things look but
not why.

Periodic Bid Timeouts

Consistent System Load

Correlated Network Traffic Spikes

Correlated Run Queue Spikes

What happened?

• Scheduler threads were locked to CPUs

• Background process comes on every 20
minutes, consumes a lot of CPU time

• No cpu-shield was set up on our
production systems

• OS bumped a scheduler thread off its CPU,
backing up its run-queue

Alerting tells you that
something happened,
but not why.

A
normal
day.

Wat?

That’s
some
cliff.

Timeouts look good.

Errors
prior
are
okay.

What happened?

“Uh, hey guys, you know
Facebook is down, right?”

Analysis gives you why
but only if you know
how to ask for what.

The
memory
use of a
bidder.

ಠ_ಠ

It’s all
binaries.

Not in processes.

Not in ETS.

Come on now.

What happened?

A jiffy bug.

A jiffy bug.

A byte here, a byte there eventually it turns into real memory.

Okay, great. We
have monitoring and
instrumentation.

Now all our problems
are solved, right?

Not
quite.

Instruments make up
for our lack of
insight.

Monitoring
makes up
for our
frailty.

No solution is perfect.

Instruments may
be misleading.

Instruments may be
overwhelming.

Instruments
may be

inaccurate.

Instruments may
be ignored.

What can
be done?

A little
paranoia never hurt

anyone.

Use glass displays.

Train.

Keep sight of
the main goal.

Recognize that
even simple
systems go
wrong
sometimes.

Have resources
you’re willing
to sacrifice.

Thanks, folks!
<3

@bltroutwine

