
Erlang based OS for Internet of Everything
Sandhya Narayan, Ph.D.
2/18/2015

Outline

●  The connected cow

●  In a world with trillions of devices often in places hard to

reach, is there is any software framework or platform
suitable for IoE?

●  Can such a platform be Erlang-based?

●  This talk will provide some motivation and an example

implementation.

IoE examples

Industrial
Automation

WirelessHART,802.15.4
6tsch, RPL
IEEE/IIC/IETF

Home Area
Networks

ZigBee, Z-Wave
6lowpan, RPL
IETF/ZigBee/private

Personal Area
Networks

Bluetooth, BLE
3G/LTE
3GPP/IEEE

Networked
Devices

WiFi/802.11
TCP/IP
IEEE/IETF

Typical IoE Architecture

THINGS GATEWAY NETWORK & CLOUD

NETWORK
INFRASTRUCTURE

CLOUD / DATA CENTER
INFRASTRUCTURE

CONTOLLER

Diverse languages and programming
environments

Embedded C, ASICs
FPGA

THINGS

Diverse languages and programming
environments

C, Java, ASICs

GATEWAY

Diverse languages and programming
environments

Ruby/Rails, Java,
Node.js, Python,
PHP, Scala, Erlang,
Hadoop, Spark, R

NETWORK & CLOUD

Diverse languages and programming
environments

● Development in silos
● Need teams with varied skill-sets
● Not effective and efficient enough for

specialization, scale and rapid change
● Focus is on complexity not on the application
● May support real time data collection, but can

there be timely analysis and action?

Taming Complexity

●  Trillions of devices
●  Hard to reach and replace
●  Millions of apps

Many interesting questions
●  Do we have that many developers?
●  Mechanisms to update code, OS, protocol?
●  Methods to make it secure and reliable?

Unified approach?

Devices

Controllers
Gateways
Management
Data
Collection

 Analytics UI

Unified development focusing on the application possible?
For some cases would it be better than trying to use a different toolkit for
each component?

Erlang
Bit syntax
Concurrency
Easier to update
AST

Bit syntax
Concurrency
OTP

Functional
Programming
Concurrency

Tapestry

Monitoring and Analysis
of Interactions between Network Endpoints

© 2015 Infoblox Inc. All Rights Reserved. 11

 Tapestry

LINC and
LINCX
OpenFlow
Switches

Loom
OpenFlow
Controller

Tapestry
UI

●  Is a general scalable platform for control, telemetry and analytics of
network devices

●  Speaks a special protocol: Openflow
●  All components except UI are in Erlang
●  Implements embedded machine learning with no specialized

analytics platform (e.g. Spark, Hadoop)
●  Developed as a PoC by a small team

Erlang

Javascript

Tapestry Data
Aggregation
& Analytics

DNS: An indicator of endpoint interactions

© 2015 Infoblox Inc. All Rights Reserved. 13

Recursive
DNS Server1

Recursive
DNS Server2

Recursive
DNS Server3

Internet

Corporate network

Authoritative
DNS Server

DNS response → {Requesting IP address,
 Resolved IP address}

google.com

Google

Endpoint interactions

© 2015 Infoblox Inc. All Rights Reserved. 14

my laptop
IPAddr1

google.com
IPAddr3

IPAddr5

IPAddr2

IPAddr4

Tapestry Analytics: Community Detection

© 2015 Infoblox Inc. All Rights Reserved. 15

•  A network is said to have community structure if the nodes of the network can
be easily grouped into sets of nodes such that each set of nodes is densely
connected internally and more sparsely connected outside the group.

•  The number of communities in a network and their sizes are not known
beforehand and they are established by the community detection algorithm.

•  Two community detection algorithm implemented: Label Propagation Algorithm
and Louvain Method.

Histogram of activities (communities)

© 2015 Infoblox Inc. All Rights Reserved. 16

NCI is defined as follows:
NCI(N) = Max j, X[j] >= j

where NCI(N) is the Network Complexity Index of network N and X[j] is the number of endpoints
engaged in an activity.

Tapestry demo video

© 2015 Infoblox Inc. All Rights Reserved. 17

Tapestry Openflow Collectors

© 2015 Infoblox Inc. All Rights Reserved. 18

Openflow
switch

DNS Server1

Openflow
switch

DNS Server2

Openflow
switch

DNS Server3

Tapestry Collectors

DNS Clients

Corporate network

Openflow Switch

© 2015 Infoblox Inc. All Rights Reserved. 19

Many Flavors
●  Versions 1.0-1.5
●  pure Openflow / Hybrid
●  Hardware/ FPGA/ Software

FlowForwarding.org
Openflow switches in Erlang
●  LINC
●  LINCX
●  LINC-OE

LINCX - Fast CPU based Ethernet Switch

© 2015 Infoblox Inc. All Rights Reserved. 20

Setup flow rules in switches

© 2015 Infoblox Inc. All Rights Reserved. 21

Openflow
switch

DNS
Server1

Openflow
switch

DNS
Server2

Openflow
switch

DNS
Server3

Tapestry Collectors

DNS Clients

Loom Control
Plane

Corporate network Corporate network

icontrol utility

forwarding rules
●  bridge (port1, port2)

visibility rules
●  dns_tap (port1, port2, controller, UDP, port

53)

Identify and collect DNS responses

© 2015 Infoblox Inc. All Rights Reserved. 22

Openflow
switch

DNS
Server1

Openflow
switch

DNS
Server2

Openflow
switch

DNS
Server3

Tapestry Collectors

DNS Clients

Loom Control
Plane

Corporate network
match UDP port 53 ⇒ generate
packet-in messages to controller

Corporate network

icontrol utility

Tapestry: A real time SDN Analytics
Application

© 2015 Infoblox Inc. All Rights Reserved. 23

Tapestry Filtering

Tapestry

Tapestry Web Server

Loom Control
Plane with
DPI

Tapestry Data
Aggregator

Tapestry
Loom
Application

Tapestry Users

Tapestry Data Store

Tapestry Analytics Openflow
switch

DNS
Server1

Openflow
switch

DNS
Server2

Openflow
switch

DNS
Server3

Tapestry Collectors

DNS Clients

Corporate network Corporate network

Tapestry Data Store

© 2015 Infoblox Inc. All Rights Reserved. 24

Uses Digraph
●  available in Erlang
●  supports labels on vertices and edges
●  digraph utilities

IPAddr1

IPAddr3

IPAddr5

IPAddr4

IPAddr2

time

time

time
time

time

time

host
name

host
name

host
name

host
name

host
ame

Tapestry Filtering

© 2015 Infoblox Inc. All Rights Reserved. 25

Default Settings
% capture all requester ip addresses

{requester_whitelist,[{"0.0.0.0",0},
{"::",0}]},
 {requester_blacklist,[]},
 % accept all resolved ip addresses

{resolved_whitelist,[{"0.0.0.0",0},{"::",
0}]},

{resolved_blacklist,[]},
% query filters (regular expressions)
 {query_whitelist,[""]},
 {query_blacklist,[]},

Settings in deployment
{requester_blacklist,[{"10.102.3.50",32}]}.
{resolved_blacklist,[{"10.102.3.50",32}]}.
{query_blacklist,["^google.com$",
"\.google.com$"]}.

Tapestry Analytics: Community Detection

© 2015 Infoblox Inc. All Rights Reserved. 26

•  A network is said to have community structure if the nodes of the network can
be easily grouped into sets of nodes such that each set of nodes is densely
connected internally and more sparsely connected outside the group.

•  The number of communities in a network and their sizes are not known
beforehand and they are established by the community detection algorithm.

•  Two community detection algorithm implemented: Label Propagation Algorithm
and Louvain Method.

Tapestry Analytics: Community Detection
•  Each node is initialized with a unique label

and at every iteration of the algorithm each
node adopts a label that a maximum
number of its neighbors have with ties
broken uniformly randomly.

•  As the labels propagate through the
network in this manner, densely connected
groups of nodes form a consensus on their
labels.

•  At the end of the algorithm, nodes having
the same labels are grouped together as
communities.

•  The advantage of this algorithm over the
other methods is its simplicity and time
efficiency. The algorithm uses the network
structure to guide its progress and does
not optimize any specific chosen measure
of community strengths.

prop_labels(G)->
 random:seed(),
 Vertices = digraph:vertices(G),
 SplitValue = random:uniform(length(Vertices)),
 {V1,V2} = lists:split(SplitValue,Vertices),
 V = V2 ++ V1,
 RunCond = lists:foldl(fun(Vertex,Acc)->
 {StopCount,GoCount,G2} = Acc,
 Result = label_vertex(G,Vertex)
 case Result of

go ->
 {StopCount,GoCount+1,G2};
stop ->
 {StopCount+1,GoCount,G2}

 end
 end,{0,0,G},V),
 {NewStopCount,NewGoCount,G3} = RunCond,
 case NewGoCount > 0 of
 true ->

prop_labels(G3);
 false ->

G3
 end.

© 2015 Infoblox Inc. All Rights Reserved. 27

Community Detection using Louvain
Method

The algorithm is divided in two phases that are
repeated iteratively.

Assume that we start with a weighted network of
N nodes. First, we assign a different community
to each node of the network. Then, for each
node i we consider the neighbours j of i and we
evaluate the gain of modularity that would take
place by removing i from its community and by
placing it in the community of j. The node i is
then placed in the community for which this gain
is maximum but only if this gain is positive. If no
positive gain is possible, i stays in its original
community. This process is applied repeatedly
and sequentially for all nodes until no further
improvement can be achieved and the first
phase is then complete.

The second phase of the algorithm consists in
building a new network whose nodes are now
the communities found during the first phase.

© 2015 Infoblox Inc. All Rights Reserved. 28

 Modularity is a benefit function that measures the quality of a
particular division of a network into communities. Networks with high
modularity have dense connections between the nodes within
modules but sparse connections between nodes in different modules.

DPI for DNS positive responses

Result = case (Type1 == ipv4) and (Type2 == udp) of
 true ->
 inet_dns:decode(Payload);
 _ -> unknown
end,
case Result of
 {ok, DnsRec} ->

 Match = match_reply(DnsRec),
………….

match_reply({dns_rec, {dns_header, _, true, _, _, _,
_, _, _, _},
 [{dns_query, Query, a, in}], RRSet, _, _}) ->
 Record = lists:keyfind(a, 3, RRSet),
 case Record of

 false ->
 {error, no_a_record};
 {dns_rr, _, a, _, _, _, ID, _, _, _} ->

 {ok, ID, Query}
 end;
match_reply(_) ->
 {error, bad_response}.

© 2015 Infoblox Inc. All Rights Reserved. 29

•  Code segment uses Erlang’s pattern matching syntax and networking libraries
•  Uses DNS request/response parsing function available in Erlang kernel
•  Identifies DNS responses that have valid A records in them.
•  DPI done at the controller

Custom LINCX - match anything in
Ethernet frame

© 2015 Infoblox Inc. All Rights Reserved. 30

Define arbitrary match function
for Ethernet frame

Erlang Compiler

Match Engine

OpenFlow++/Erlang ?

Match Function
Loom

Custom
LINCX

Tapestry: A platform for IoE

© 2015 Infoblox Inc. All Rights Reserved. 31

Tapestry Collectors
Tapestry Filtering

Tapestry

Tapestry Web Server

Loom control
plane

Tapestry Data
Aggregator

Tapestry Loom
Application

Tapestry Users

Tapestry Data Store

Tapestry Analytics

32 | © 2013 Infoblox Inc. All Rights Reserved. 32 | © 2013 Infoblox Inc. All Rights Reserved. 32 | © 2014 Infoblox Inc. All Rights Reserved.

Thank you

www.flowforwarding.org

