Evolving projects
to concurrency
with Wrangler

Simon Thompson
University of Kent, UK

Wrangler is a tool

Tool for refactoring Erlang programs.
Inside Emacs and ErlIDE ...

... and stand-alone.

Wrangler is a toolkit

Usable from the Erlang shell / command line.
An open API for new refactorings ...
... and a DSL for scripting complex changes.

AP| migration tool (e.g. to , to

Wrangler is a toolset

Clone detection and module “bad smells”.
Web services testing support.
Plays with testing tools.

Laboratory: symbolic evaluation, slicing, concurrency, parallelisation.

erlang

rerlang

rangler

VVrangler

wrangler | ‘rangls |

noun

1 N. Amer.a person in charge of horses or other livestock
on a ranch.

* a person who trains and takes care of animals on a
film set. they had three cow wranglers to help with the scene.

2 a person engaging in a lengthy and complicated dispute.
he was known as the wrangler for the aplomb with which he
skewered the professors.

3 (at Cambndge University) a person placed in the first
class of the mathematical tripos.

Wrangler is a tool

Refactoring

“Change how the program
works, but not what it does

Part of the programmer’s
standard toolkit.

Renaming, function
extraction, generalisation

Refactoring tools

Avoid the “tedious and error-prone”.
Keep it simple.

Cover the bureaucracy.

Whole language ...

... whole projects,

... plus tests, ...

Rename,
Demo function extraction,
generalisation,
rename again.

Using Wrangler outside emacs/ErlIDE

Wrangler from the Erlang shell ... use module api_wrangler.er]
For example:
1> api_wrangler:start().

2> api_wrangler:rename_mod("'main.erl",
test,

["c:/cygwin/home/hl/test"]).

3> api_wrangler:stop().

More info: http://refactoringtools.github.io/wrangler

Wrangler is a toolkit

Wrangler is a toolkit

Wrangler is written in Erlang,
all the way down, so you can
extend it yourself ...

Wrangler is a toolkit

... but we have given you
tools to make that extension
much easier to deal with.

Key idea

You know Erlang ...

. you don’t want to
have to learn a whole
new language or
compiler internals to
get the job done.

> Ve \
lr'. v &
vy ' ' ' ‘

- -—la— —Mm Lmmi |

APl and DSL

An API to define a completely

. DSL for scripting refactorings
new refactorings from scratch

. ... ‘‘on steroids”
... using Erlang concrete syntax,

« embedded in Erlang.
... also “code inspection”.

What we’ve been asked for ...

to
Batch module renaming
Removing “bug preconditions” for Quviq.
AP| migration ... for example, to

Introduce S.

Wrangler API

Generalisation

Describe expressions in Erlang ...

loop_a() -> loop_a() ->
receive receive

stop -> ok; stop -> ok;

{msg, _Msg, 0@} -> loop_a(); {msg, _Msg, 0@} -> loop_a();
msa, Msg, Nt -> {msg, Msg, N} ->
body(Msg,N, "ping!~n"),

oop_d Loop_a()
end. end.
—> body(Msg,N,Str) ->
5 tormat("ping!~n"), 10:format(Str),
timer:sleep(500), timer:sleep(500),

b ! {msg, Msg, N - 1}. b ! {msg, Msg, N - 1}.

Generalisation

... how expressions are transformed ...

loop_a() -> loop_a() ->
receive receive
stop -> ok; stop -> ok;
{msg, _Msg, @} -> loop_aQ); {msg, _Msg, @} -> loop_aQ);

{msg, Msg, N} ->
body(Msg,N).

loop_a()
end. end.
body(Msg,N) - body(Msg,N,Str)|->
10:format("ping!~n"), 10:tormat(Str),
timer:sleep(500), timer:sleep(500),

b ! {msg, Msg, N - 1}. b ! {msg, Msg, N - 1}.

Generalisation

...and its context and scope.

loop_a() -> loop_a() ->
receive receive
stop -> ok; stop -> ok;
{msg, _Msg, 0} -> loop_a(); {msg, _Msg, @} -> loop_aQ);

{msg, Msg, N} ->
body(Msg,N).

loop_a()
end. end.
body(Msg,N) - body(Msg,N,Str)|->
10:format("ping!~n"), 10:tormat(Str),
timer:sleep(500), timer:sleep(500),

b ! {msg, Msg, N - 1}. b ! {msg, Msg, N - 1}.

Generalisation

Pre-conditions for refactorings

loop_a() ->
receive
stop -> ok;
{msg, _Msg, 0} -> loop_a();
{msg, Msg, N} ->
body(Msg,N),
loop_a()
end.

body(Msg,N) ->
io:format("ping!~n"),

timer:sleep(500Q
b ! {msg, Msg,,

Can’t generalise over an
expression that contains free
variables ...

... or use the same name as an
existing variable for the new
variable.

Wrangler API

Traversals describe
how transformations
are applied

Context is used to
define preconditions

Rules describe transformations

Templates describe expressions

Introducing concurrency

Key idea

|dentify parts of computations that
can be performed independently.

Base decisions on intra-function
control-flow slicing.

Percept2

Uncovering potential concurrency

Number of active processes.
Runnable vs running.

Process id to function definition.
Github: Refactoring Tools/Percept2.

Also available: htop, etop, ...

Introducing concurrency in practice

Some examples are easy ...

lists:map (., ..) [f(X) || X <- Xs]

... both can be replaced with a parallel map occurrence

percept2:pmap(.., ..) percept2:pmap(f,Xs)

But in general need to analyse program structure more carefully.

Pragmatics

Fit with Erlang design philosophy:

® work with OTP behaviours: synchronous to
asynchronous calls to a generic server ...

® ... an instance of a general function transformation;

® Deal with tail recursive functions.

Provide automation in Wrangler.

Analysis

readImage(FileName, FileName2) ->

{ok, #erl image{format=F1, pixmaps=[PM1]}}
= erl img:load(FileName),
Colsl=PMl#erl pixmap.pixels,

{ok, #erl image{format=F2, pixmaps=[PM2]}}
= erl img:load(FileName2),
Cols2=PM2#erl pixmap.pixels,

R1
R2

[B1||{ Al, Bl}<-Colsll],
[B2| [{ A2, B2}<-Cols2],

{R1, F1, R2, F2}.

Analysis and transformation

readImage(FileName, FileName2) ->
Self = self(),
Pid = spawn link(
f ->

readImage(FileName, FileName2) ->

{ok, #erl image{format=F1, pixmaps=[PM1]}}
= erl img:load(FileName),

Cols1=PMl#erl pixmap.pixels, Self ! {self(), {R1l, F1}}
end),
{ok, #erl image{format=F2, pixmaps=[PM2]}}
= erl img:load(FileName2), {ok, #erl image{format=F2, pixmaps=[PM2]}}
Cols2=PM2#erl pixmap.pixels, = erl img:load(FileName2),
Cols2=PM2#erl pixmap.pixels,
R2 = [B2]||{ A2, B2}<-Cols2], R2 = [B2]||{ A2, B2}<-Cols2],
{R1, F1, R2, F2}. receive {Pid, {R1l, F1}} -> {R1l, F1} end,

{R1, F1, R2, F2}.

Working with OTP

Fit with Erlang design philosophy: calculate a reply separately from
the new state ...

handle call(which children, From, State) ->

{reply, Resp, State};

handle call(which children, From, State) ->

spawn_Link(

fun () ->
gen server:reply(From, Resp)
end),
{no reply, State};

The Wrangler APl — top level

The top level of the transformation

transform(Args=#args{current file name=File,

cursor pos=Pos}) ->
?STOP TD TP([rulel(Pos)], [File]).

?STOP _TD TP ... apply the transformation top down;

rulel(Pos) ... apply rulel when possible.

The Wrangler API - rule

rulel(Pos) ->
?RULE (?T(

)
gen new handle call(This@, Res@, Stateq,

{Args@@, Guard@@, Body@@, State@}),

[replace with this/

Meta-variables match objects (Res@) and sequences (Body@@).

The Wrangler API - analyse / generate

gen new handle call(C, Res, State,
{Args, Guard, Body, State}) ->
{Slicel, }=wrangler slice new:backward slice(C, Res),
{Slice2, }=wrangler slice new:backward slice(C, State),
ExprLocs = Slicel -- Slice2,
Exprs =[B||B<-Body,
lists:member(
apli refac:start end loc(B), ExprLocs)],
NewBody = Body -- EXxprs,

The Wrangler API - analyse / generate

gen new handle call(C, Res, State,
{Args, Guard, Body, State}) ->

apl refac:subst(
?T("handle call(Args@@) when Guard@E@ ->
Body@@,
spawn_link(
fun() ->
Resp= begin Exprs@@ end,
gen server:reply(From, Resp)
end),
{no reply, State@};"),
[{'Args@@', Args}, {'Guard@E@', Guard},
{'Body@@', NewBody}, {'State@', State},
{'Exprs@@', Exprs}]).

Demo Slicing in
Wrangler

Handling tail recursion

do_grouping([], _, _, _, Acc) -> {ok, Acc};

do grouping(Nodes, Size, 1, Counter, Acc) ->
{ok, [make group(Nodes, Counter)|Acc]};

do grouping(Nodes, Size, NumGroup, Counter, Acc) ->
Group = lists:sublist(Nodes, Size),
Remain = lists:subtract(Nodes, Group),
NewGroup = make group(Group, Counter),
NewAcc = [NewGroup|Acc],
do grouping(Remain, Size, NumGroup-1, Counter+l, NewAcc).

Handling tail recursion

Work thorough a series of analysis and transformation steps.
® is it tail recursive!
® which is the accumulator?
® partition the body
® float out: computation that can be separated,
® new values of parameters, and ...
® ... new value of the accumulator;

® and finally repackage.

Is it tail recursive!

Without loss of generality we assume that it has the form ...

fun name(Arg 11, . . ., Arg 1ln) -> Bodyl;
fun _name(Arg ml,, Arg mn) ->
BodyExprl,
BodyExpr2,
fun_name(NewArg ml, ..., NewArg mn).

... but obviously the same mechanisms will apply in other forms.

Which is the accumulator?

Value depends on itself
(and some others)?

No other parameter
depends on its value.

Its value is not used in the
termination condition of
the recursion.

do_grouping([1, _, _, _,

do grouping(Nodes, Size,
{ok, [make group (Nodes, Counter) |Ac

do grouping (Nedes, Size, NumGroup, Cou
Group = lists:sublist {Nodes, Size),

Remain = lists:subtract (Nodes, Group),
NewGroup = make group(Group, Counter),
NewAcc = [NewGroup|Acc],

do grouping(Remain, Size, NumGroup-1, Counter+l, NewAcc).

do_grouping([1, _, _, _

do grouping(Nodes, Size, |
{ok, [make group (Nodes, Counter) |Acc

do grouping(Nodes, Size, NumGroup, Coun
Group = lists:sublist(Nodes, Size),
Remain = lists:subtract(Nodes, Group),
NewGroup = make group(Group, Counter),
NewRAcc = [NewGroup|Acc],
do _grouping(Remain, Size, NumGroup—ll Counter+l, NewAcc).

do_grouping((1, ¢+ _r _¢ Acc

do grouping (Nodes, Size, 1
{ok, [make group (Nodes, Counter) |Acc]}:

do grouping (Nedes, Size, NumGroup, Counter, Acec) ->
Group = lists:sublist{Nodes, Size),

Remain = lists:subtract (Nodes, Group),
NewGroup = make group (Group, Counter),
NewAcc = [NewGroup|Acc],

do grouping(Remain, Size, NumGroup-1, Counter+l, Newﬁccl.

What can we float out!?

do_grouping([1, _, _, _,

do grouping(Nodes, Size,
{ok, [make group (Nodes, Counter) |Ac

do grouping (Nedes, Size, NumGroup, Cou
Group = lists:sublist {Nodes, Size),
Remain lists:subtract (Nodes, Group),

From the Slice for the Nev J_rJA; = make group (Group, Counter),

NewAcc = [NewGroup|Acc]

accu m u Iato r do grouping(Remain, Si ;_, NumGroup—-1, Counter+l, NewAcc).

do grouping([], , , , Acc) —-> {ok, Acc}:
do grouping(Nodes, Size, 1, Counter, Acc) ->
{ok, [make group (Nodes, Counter) |Acc]}:
ze Counter, Acc) ->

(10 u
1 do grouping(Nodes, Size, NumGroup, Coun
nOt dependlng On the Group = lists:sublist(Nodes, Size),
= lists:subtract (Nodes, ;rcﬁp),
value of the accumulator, NewSzoup = make_group (Group, Countox).
ewAcc = ewGroup |Acc],
do _grouping(Remain, Size, NumGroup—ll Counter+1l, NewAcc).

Eemain

I 1 1 r] do grouping([], , , _, Acc) -> {ok, Acc};
nOt Over applng Wlt do grouping (Neodes, Size, 1, Counter, Acc) ->
{ok, [make group(N des, Counter) |Acc]}:

Slices Of Other Parameters. do grouping (Nodes, Size, NLh_.lur.,_;[.;-, Counter, Acc) —->

Group = lists:sublist{Nodes, Size),

Remain = lists:subtract (Nodes, Group),
NewGroup = make group (Group, Counter),
NewAcc = [NewGroup|Acc],

do grouping(Remain, Size, NumGroup-1, Counter+l, Newﬁccl.

Transformed process ... top level

do grouping(Nodes, Size, NumGroup,Counter, Acc) ->
Parent = self(),

Workers = [spawn(fun() -> do grouping worker loop(Parent) end)
|| <- lists:seq(l, erlang:system info(schedulers))],

Pid = spawn link(
fun() ->

do grouping dispatch and collect loop(Parent, Acc, Workers, 0, 0)
end),

Pid ! {Nodes, Size, NumGroup, Counter},

receive
{Pid, Acc} ->
[P ! stop || P <- Workers],
Acc
end.

Transformed process ... under the hood

do grouping worker loop(Parent) ->

receive
{Group, Size, Counter, Index} ->
EaCh Of the WOI’I(EI"S NewGroup = make group(Group, Counter),
Parent ! {{worker, self()}, Index, NewGroup},
repeatedly calculates do_grouping_worker_loop(Parent);
make group on demand. stop >
end.

do grouping dispatch and collect loop(Parent, Acc, Workers, RecvIndex, CurIndex) ->
receive
{[]1, Size, NumGroup, Counter} when RecvIndex == CurIndex ->
Parent ! {self(), {ok, Acc}};
{[]1, Size, NumGroup, Counter} when RecvIndex < Curlndex ->
self() ! {[], Size, NumGroup, Counter},

do grouping dispatch and collect loop(
Ensure that results Parent, Acc, Workers, RecvIndex, CurIndex);
I {Nodes, Size, 1, Counter} when RecvIndex == CurIndex ->
CO”eCted In the correct Parent ! {self(), {ok, [make group(Nodes, Counter)|Accl}};
{Nodes, Size, 1, Counter} when RecvIndex < CurIndex ->
order, to Preserve self() ! {Nodes, Size, 1, Counter},
semantics do grouping dispatch and collect loop(

Parent, Acc, Workers, RecvIndex, CurIndex);
{Nodes, Size, NumGroup, Counter} ->
Group = lists:sublist(Nodes, Size),
Remain = lists:subtract(Nodes, Group),
Pid = oneof(Workers),
Pid ! {self(), Group, Size, Counter},
self() ! {Remain, Size, NumGroup-1, Counter+1l},
do grouping dispatch and collect loop(
Parent, Acc, Workers, RecvIndex, CurIndex+l);
{{worker, Pid}, RecvIndex, NewGroup} ->
NewAcc = [NewGroup|Acc],
do grouping dispatch and collect loop(
Parent, NewAcc, Workers, RecvIndex+1l, CurIndex)
end.

Why are these explicit transformations?

These are complex transformations ... why not just in a compiler?
® So that the step is an explicit part of the development ...
® ... and in particular logged in a repository.
® Compiler-based transformation notoriously fragile.
® ‘Hand’ intervention is often necessary for optimal results ...

® ... as recognised by others performing loop parallelisation.

APl migration: maps in R17

Can we use s in our project!

Look for uses of ... are they -like?

All the details in my talk at the Erlang User Conference 2014

Wrangler is a toolset

Wrangler as a toolset

Clone detection

Parametrisable

Incremental

Automated support using the DSL
Module “bad smell” detection

Size, cycles, exports
Other inspection and refactoring functions

WSToolkit: PBT for web services

Clone detection and removal

@ emacs@HL-LT
File Edit Options Buffers Tools Help

T TBEEx BB S X8

=)

DR &8 XY

loop a() -> -
—_“_;t;p -> ok -
msg, }isg,0) > loop_a(): Rename function
{msg,M=g,N} ->
io:format ("ping'!~n"),
timer:sleep (500), o
b ey, Mo, M413) Rename variables
i1o00p a|()
end.
roon 0) > Reorder variables
—_H—;t;p -> ok; .
(msg, Ysg,0) —> loep b(); Add to export list
{msg,M=g,N} ->
io:format ("pong'!~n"),
timer:sleep (500), . =
! tmsg, Mag, N41, Fold™ against the def.
loop b ()
end. -
-—-\—-—— pingpong.erl Bot L46 Git:master (Erlang EXT)-——————————ceemm e e e =

c:/cygwin/home/hl/demo/pingpong.erl:
c:/cygwin/home/hl/demo/pingpong.erl:
The generalised expression would be:

44.13-46.27:
55.13-57.27:

new_ fun (Msg, N, NewVar 1, NewVar 2) ->
io:format (NewVar 1),
timer:sleep (500),
NewvVar 2 ! {msg,Msg,N + 1}.
-1\ **- +*erl-output* 40% L1l R T sttt

Demo Clone detection
in Wrangler

Not just a script ...

Tracking changing names and positions.
Generating refactoring commands.
Dealing with failure.

User control of execution.

... we're dealing with the pragmatics of composition, rather than
just the theory.

Automation

Don't have to describe each command explicitly: allow conditions
and generators.

Allow lazy generation ... return a refactoring command together
with a continuation.

Track names, so that gives the ‘current’ name of
an entity at any point in the refactoring.

Clone removal: top level

Transaction as a whole ... non-“atomic” components OK.

Not just an APIl: 7atomi c etc. modify interpretation of what they
enclose ...

?atomic([?1nteractive(RENAME FUNCTION)

?refac_(RENAME ALL VARIABLES OF THE FORM NewVar*)
?repeat_interactive(SWAP ARGUMENTS)
?1f_then(EXPORT IF NOT ALREADY)

’non_atomic(FOLD INSTANCES OF THE CLONE)
DR

Erlang and the embedded DSL

refac_(rename_var,

[M,
begin

{_, F1, A1} = 7current(M,F,A),

{F1, A1}
end,
fun(X) ->

re:runCatom_to_li1st(X), "NewVar*")/=nomatch
end,
{user_input, fun({_, _, V}) ->
lists:flatten(io_l1ib:format
"Rename variable ~p to: ", [V]))
end},

SearchPaths])

WS Toolkit

Property-based testing of stateful systems

Build an abstract model: a single state EFSM
® the state data: typically an Erlang record.
® pre- and post-conditions on calls of APl functions

® state data transitions for the APl functions

Test the system through random call sequences through the model.

prop state machine() ->
?SETUP(fun setup/0,
?FORALL (Cmds, commands(?MODULE),

begin
{ H, S, Res} = run commands(?MODULE, Cmds),
Res==0k

end)).

Automation of web services testing

From WSDL description, automated creation of Erlang code for
® data type definitions,
® data generators,
® web services connector module, and

® skeleton eqc statem behaviour.

https://github.com/Refactoring Tools/WSToolkit

Evolution and refactoring

Automatic inference of web service interface changes.
A set of domain-specific refactorings in Wrangler.

Automatic creation of Wrangler refactoring scripts.

https://github.com/RefactoringTools/wrangler

Automation ... why!

Automation of the boilerplate and the routine ...

... gives time to concentrate on the semantic.

Because it’s useful in practice ...

www.interoud.com

363 operations: 160 POST and 203 GET; data returned in XML.

Hand-coded QuickCheck state machine tests 98 operations of this
web service (27% of the total).

Hand-crafted VWS connection module of 1,000 lines of code.

Rapid change: e.g. in September and October 2013, |0 operations
added and |5 modified, many by adding new parameters.

Automation leads to

® fewer errors (e.g.in connector module), and

® more robust evolution.

Automation architecture

1DIAYIS 9Im

1dS M

€ —

WSDlechema
WSDL l
> erlsom
é)
data model and QuickCheck
operations e, o Y
_ .
code
generation J
request [(C e) request A
< < eqc_statem
response Connector response .
> dule test file
Mo y y

- =>User

Connector module

From WSDL operation descriptions ...

<operation name="GetWeather" pattern="http://www.w3.0rg/ns/wsdl/in-out">
<documentation>Get weather report for all major cities around the world.
</documentation>
<input element="tns:GetWeather"/>
<output element="tns:GetWeatherResponse"/>
</operation>

... generate Erlang connector functions, to call the service.

get weather(CityName, CountryName)->
GetParams = generate get params(GetWeather', [CityName, CountryName]),
Url = add get params(?BASE URL++"/GetWeather",6 GetParams),
http request(GET', Url,
fun(Data) ->
process response(GetWeatherResponse', Data)
end) .

Evolution architecture

WSDL WSDL
version #nl schema

version #n
erlsom { eqc_statem }
\|(test file
N | refactoring script /
datamodel and - P L
) generator W
operations) r
I I 2
Diff 4{ change] [refactoring I %
A report Script
4 N C e
datamodel and é’e,,eroo'@ r
operations oy, -T i/
[WS Connector eqc_statem ->
Erisen) module test file User
WSDL | WSDL version #n’

version #n’' schema

Inferring changes in WSDL

Old and new WSDL represented as Erlang data structures.

Infer Levenshtein distance ...

... plus some domain-specific processing e.g. order, rename, merge.
Typical example: two new operations, plus ...

... changes to input and output components and their types.

Domain-specific refactorings

Some refactorings in VWrangler already e.g renaming, but others not.
The PBT use case requires specific extras, e.g. add parameter:
® addition of a field to a tuple, not as another parameter;
® symbolic calls in description of the state machine;

® connector module uses.

These domain-specific refactorings defined using the Wrangler API.

Inferring refactoring scripts

From the changes we infer between WSDL versions we can derive
a script for the Wrangler DSL to automate the refactorings.

In the case inferred in the paper (with some ...).

-module(refac evolve api).

composite refac(Args=#args{current file name=File})
?interactive(
[?7refac (refac add op,[File,"find all rooms",[],[File]]),
?refac (refac add op arg,[File,"find devices",1,"SortBy",[File]]
?refac (refac add op arg, [File,"find devices",1,"Order",[File]]
?refac (refac add op arg,[File,"find devices",1,"Query",[File]])
?refac (refac add op, [File,"delete device",["DeviceId"],[File]]

’
’

)
)
1)

Many thanks to Huiqing Li for her
Wrangler work from its inception
through to last summer.

Getting involved

https://github.com/RefactoringTools

{IRELEASE ' ROWESS

