
Erlang in the Cloud  
Talko Service Architecture

Ransom Richardson
ransomr@talko.com

@ransomr
https://medium.com/@ransomr

mailto:ransomr@talko.com

On the Current
Composition of
Zero-Knowledge
Proofs

2

Erlang in the Cloud
Intro

• Talko
• erlcloud

The Cloud is Different
• Reliability
• Deployment
• Service State

More Erlang
• Redis to Bz

Looking Forward
• AWS Lambda

Questions

3

“The cloud is fundamentally different”

https://www.youtube.com/watch?v=JIQETrFC_SQ

https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ

Always In-Sync
Flag, tag, bookmark, share
to reduce anxiety, increase

transparency.

Tap to Talk 
Conferencing meets
messaging. On any

network, or even offline.

Tap to Show  
Hi-detail photos sent

instantly while talking.

Mobile  
Team
Communications
anytime, anywhere,
for the new style of work.

4

Today: Calls & ‘rich conversations’; iOS
Soon: Calls, ‘rich conversations’ & messaging; iOS, Web, Android

Next: Managed deployments & administration, integration

Talko Service
• VoIP
• Audio Recording
• Registration
• Contact matching
• Group and call creation and membership
• Texts, photos, tags
• Notifications
• User awareness
• …

5

Service Team

6

Big Service Small Team
Optimize for Developer Productivity

7

erlcloud
https://github.com/gleber/erlcloud

• Partial AWS API Support
• Many contributors
• Implement needed APIs
• Contributions welcome!

8

bwbuchanan ptrakhtman gleber kevinmontuori fogfish elbrujohalcon

https://github.com/gleber/erlcloud
https://github.com/gleber/erlcloud
https://github.com/gleber/erlcloud

Reliability

9

Reliability
• The cloud is unreliable – expect failures
• Let it Crash!

10

Erlang AWS

process instance

supervisor Auto Scale Group

Reliability
• More Than One

Instance
• Different Availability

Zones
• Enough extra

capacity to absorb
failures

• …and load spike that
is caused by failures

11

12

DynamoDBAmazon S3

web client mobile client

Elastic Load
Balancing

Bz Servers

Session
Servers

Media
Servers

Reliability

13

Talko Service

Erlang VM

erld

upstart

Auto Scaling

Deployment

14

Deployment

Two approaches:

1. Upgrade existing instances
2. Deploy all new instances

15

Deployment – New Instances
• Easy rollback
• Need to be able to deploy quickly for

reliability
• Tests reliability code path
• Known instance state
• Security

16

Blue/Green Deployment
• Blue service running
• Deploy Green service with new code
• Switch all traffic to Green
• Take down Blue service

17

http://martinfowler.com/bliki/BlueGreenDeployment.html

http://martinfowler.com/bliki/BlueGreenDeployment.html

Talko Deployment
State would be lost on blue/green switch
How do we preserve in-progress calls?

Modified approach:

• Deploy new instances
• Test
• Close old instances
• Wait for load to move to new instances
• Take down old instances

18

19

DynamoDBAmazon S3

web client mobile client

Elastic Load
Balancing

Bz Servers

Session
Servers

Media
Servers

Service State

20

Service State

Stateless

• Event handling code
only

• Easier reliability,
scaling and
deployment

• Limited functionality

Stateful (gen_server)

• State and message
handling code

• Harder reliability,
scaling and
deployment

• Full functionality

21

Talko Services are Stateful
• In Progress Calls
• Persistent Connections
• Cross-Client Communications

How do we manage this state so we can build a
reliable, scalable and deployable service?

22

Ephemeral State
• In Progress Calls
• Persistent Connections
• Cross-Client Communications

This state is ephemeral:
• No Redundancy
• Losing it results in slight (< 30s duration) user

interruption

23

24

DynamoDBAmazon S3

web client mobile client

Elastic Load
Balancing

Bz Servers

Session
Servers

Media
Servers

Ephemeral State Challenges

• Possibility of user impact
• Need to detect and heal outages very quickly
• Takes time for load to shift to new instances
• Potential for load spikes on loss of state

25

More Erlang
Redis to Bz

26

27

DynamoDBAmazon
S3

web client mobile client

Elastic Load
Balancing

Session
Servers

Media
Servers

Redis to Erlang
Redis for all cross-
instance
communication:
• Pub/Sub
• Ephemeral State

28

User Awareness

29

30

31

Redis Challenges
• No single server that

can run code on
shared data

• Distributed
Concurrent Updates
to Shared State

• Complex algorithms
and complex code

• Duplicated Data

32

Bz Server
• Erlang server
• gen_server per

shared object
(account, call)

• Much simpler code –
awareness
expiration is trivial

• Faster (!?!?)

33

Looking Forward

34

AWS Lambda
Just write a function

Don’t worry about:
1. Reliability
2. Deployment
3. Machines/instances

But must be Stateless

35

Questions

36

Distributed Erlang
We don’t use it.
Should we?

Concerns:
• Clusters that cross

AZs or Regions
• Speed of detecting/

healing failures
• Fully interconnected

37

Questions?
Ransom Richardson
ransomr@talko.com

@ransomr
https://medium.com/@ransomr

mailto:ransomr@talko.com

Backup Slides

39

Choosing Erlang
• https://medium.com/talko-team-talk-share-do/

we-learned-us-some-erlang-ef06bd44e3c2

● Concurrency Model
● Error Handling
● Reputation
● Domain Fit

40

https://medium.com/talko-team-talk-share-do/we-learned-us-some-erlang-ef06bd44e3c2

Erlang Features
We Use

• OTP
• Dialyzer
• ETS

We Don’t Use

• Distributed Erlang
• Releases/Upgrades
• Mnesia

41

Key Dependencies
• erlcloud
• cowboy & ranch
• jsx
• lager
• gproc
• rebar

42

