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On the Current 
Composition of 
Zero-Knowledge 
Proofs
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Erlang in the Cloud
Intro 

• Talko  
• erlcloud 

The Cloud is Different 
• Reliability 
• Deployment 
• Service State 

More Erlang 
• Redis to Bz 

Looking Forward 
• AWS Lambda 

Questions

3

“The cloud is fundamentally different” 

https://www.youtube.com/watch?v=JIQETrFC_SQ 

https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ
https://www.youtube.com/watch?v=JIQETrFC_SQ


Always In-Sync 
Flag, tag, bookmark, share 
to reduce anxiety, increase 

transparency.

Tap to Talk 
Conferencing meets 
messaging. On any 

network, or even offline.

Tap to Show  
Hi-detail photos sent 

instantly while talking.

Mobile  
Team 
Communications 
anytime, anywhere, 
for the new style of work.
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Today: Calls & ‘rich conversations’; iOS 
Soon: Calls, ‘rich conversations’ & messaging; iOS, Web, Android 

Next: Managed deployments & administration, integration 



Talko Service
• VoIP 
• Audio Recording 
• Registration 
• Contact matching 
• Group and call creation and membership 
• Texts, photos, tags 
• Notifications 
• User awareness 
• …

5



Service Team
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Big Service Small Team
Optimize for Developer Productivity
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erlcloud
https://github.com/gleber/erlcloud 

• Partial AWS API Support 
• Many contributors 
• Implement needed APIs 
• Contributions welcome! 
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bwbuchanan ptrakhtman gleber kevinmontuori fogfish elbrujohalcon

https://github.com/gleber/erlcloud
https://github.com/gleber/erlcloud
https://github.com/gleber/erlcloud


Reliability
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Reliability
• The cloud is unreliable – expect failures 
• Let it Crash!
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Erlang AWS

process instance

supervisor Auto Scale Group



Reliability
• More Than One 

Instance 
• Different Availability 

Zones 
• Enough extra 

capacity to absorb 
failures 

• …and load spike that 
is caused by failures
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DynamoDBAmazon S3

web client mobile client

Elastic Load
Balancing

Bz Servers

Session 
Servers

Media 
Servers



Reliability
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Talko Service

Erlang VM

erld

upstart

Auto Scaling



Deployment
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Deployment

Two approaches: 

1. Upgrade existing instances 
2. Deploy all new instances
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Deployment – New Instances
• Easy rollback 
• Need to be able to deploy quickly for 

reliability 
• Tests reliability code path 
• Known instance state 
• Security
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Blue/Green Deployment
• Blue service running 
• Deploy Green service with new code 
• Switch all traffic to Green 
• Take down Blue service
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http://martinfowler.com/bliki/BlueGreenDeployment.html 

http://martinfowler.com/bliki/BlueGreenDeployment.html


Talko Deployment
State would be lost on blue/green switch 
How do we preserve in-progress calls? 

Modified approach: 

• Deploy new instances 
• Test 
• Close old instances 
• Wait for load to move to new instances 
• Take down old instances
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Service State
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Service State

Stateless

• Event handling code 
only 

• Easier reliability, 
scaling and 
deployment 

• Limited functionality

Stateful (gen_server)

• State and message 
handling code 

• Harder reliability, 
scaling and 
deployment 

• Full functionality
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Talko Services are Stateful
• In Progress Calls 
• Persistent Connections 
• Cross-Client Communications 

How do we manage this state so we can build a 
reliable, scalable and deployable service?
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Ephemeral State
• In Progress Calls 
• Persistent Connections 
• Cross-Client Communications 

This state is ephemeral: 
• No Redundancy 
• Losing it results in slight (< 30s duration) user 

interruption
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Ephemeral State Challenges

• Possibility of user impact 
• Need to detect and heal outages very quickly 
• Takes time for load to shift to new instances 
• Potential for load spikes on loss of state
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More Erlang
Redis to Bz
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Redis to Erlang
Redis for all cross-
instance 
communication: 
• Pub/Sub 
• Ephemeral State
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User Awareness
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Redis Challenges
• No single server that 

can run code on 
shared data 

• Distributed 
Concurrent Updates 
to Shared State 

• Complex algorithms 
and complex code 

• Duplicated Data
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Bz Server
• Erlang server 
• gen_server per 

shared object 
(account, call) 

• Much simpler code – 
awareness 
expiration is trivial 

• Faster (!?!?)
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Looking Forward
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AWS Lambda
Just write a function 

Don’t worry about: 
1. Reliability 
2. Deployment 
3. Machines/instances 

But must be Stateless
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Questions
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Distributed Erlang
We don’t use it. 
Should we?

Concerns: 
• Clusters that cross 

AZs or Regions 
• Speed of detecting/

healing failures 
• Fully interconnected
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Ransom Richardson 
ransomr@talko.com 
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Backup Slides
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Choosing Erlang
• https://medium.com/talko-team-talk-share-do/

we-learned-us-some-erlang-ef06bd44e3c2 

● Concurrency Model 
● Error Handling 
● Reputation 
● Domain Fit
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https://medium.com/talko-team-talk-share-do/we-learned-us-some-erlang-ef06bd44e3c2


Erlang Features
We Use

• OTP 
• Dialyzer 
• ETS

We Don’t Use

• Distributed Erlang 
• Releases/Upgrades 
• Mnesia
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Key Dependencies
• erlcloud 
• cowboy & ranch 
• jsx 
• lager 
• gproc 
• rebar
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