.

The Art of Powering the Internet’s
Next Messaging System

Who are we?

Juan Puig Martinez Mubarak Seyed
Senior Software Engineer - Software Engineer
5+ years of Erlang/OTP - Committer - Apache Flume
@jpuigm - Distributed Systems

@mubarakseyed

https://twitter.com/jpuigm
https://twitter.com/jpuigm
https://twitter.com/mubarakseyed
https://twitter.com/mubarakseyed

What is Layer?
SPDY

Message Routing

Data infrastructure
Performance

Challenges and lessons learned
Q&A

The Open Communication Layer

for the Internet

Client SDKs that make it dead
simple to add messaging and
communication features to your
application.

What is so hard about
communications?

Pretty much everything...

=1 Client Side Storage @ Global Infrastructure
(45 Network Transport Security
¢y Cloud Storage ¢ Push Notifications

V| Data Sync Multiple Devices

% Offline States @ Scalability

... Across all platforms

Fundamental building blocks

4 N N

stripe D

Maps Payments Communications

o AN AN /

You focus on the
customer experience.

We'll focus on infrastructure,
scalabllity, and security.

Layer — Software Stack

~N

s
@ s A‘w'%'
E[R I.AJNG cassandra

~

° Core OS5

J

Why Erlang?

Naturally born for communications

Fault tolerance

Help us focus on HA using best OTP practices

Concurrency model

Handles large number of concurrent lightweight processes

Bit syntax

Binary protocol pattern matching

Layer’s backend in a nutshell

)

J

Architecture — Key components

/

Routing

\

o

cassandra
Ml

Apache

/

SPDY and Cowboy

SPDY

Basis for HTTP/2

Connection management

Data transfer formats

Layer relies on SPDY protocol to transport content

Latency reduction
Compression (headers)

Multiplexing

SPDY — A bit of history

There are a few drafts to date (v1, v2, v3, v3.1 and v4)
Most implementations are based on v3 and va3.1

Spring 2013, experimental SPDY support is added to cowboy

Commits on May 30, 2013

I Add experimental and incomplete SPDY support -
essen authored on May 30, 2013

The SPDY connection processes are also supervisors

B 9a2d35c <>

* sendfile support
* request body reading support

Summer 2013, latest SPDY version (v4) is released
HTTP/27?

http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://grmocg.github.io/SPDY-Specification/draft-mbelshe-spdy-00.html

Cowboy + SPDY

ninenines/cowboy - cowboy spdy.erl

Protocol implementation

Loop that handles frames, and coordinates replies

ninenines/cowlib - cow spdy.erl

Protocol manipulation

Parsing/building of frames, streams, headers and settings

https://github.com/ninenines/cowboy
https://github.com/ninenines/cowboy
https://github.com/ninenines/cowboy
https://github.com/ninenines/cowlib
https://github.com/ninenines/cowlib

Cowboy + SPDY

Q ninenines / cowboy @watch~ 28 | Star 199 YFork 5%

History for cowboy / src / cowboy_spdy.erl
Commits on Feb 16, 2015

Merge branch 'add_spdy_record_field_type' of https:/github.com/sile/... = B eran2ep <>
‘essen authored 29 days ago = n

Comits on Feb 3, 2015

Use cowlib master B 3cedets <>
‘essen authored on Feb 1 fals

Comits on Dec 4, 2014

Add typespecs for state record in cowboy_spdy module B coemzbs ¢

sile authored on Dec 4, 2014
Comits on Nov 7, 2014

Rename 'halt' to 'stop' for better consistency = &
‘essen authored on Nov 7, 2014 .

999desb <>

Comits on Oct 3, 2014

Replace some /binary to /bits in binary pattern matching = &
essen authored on Oct 3, 2014

beescas <>

Commits on Sep 24, 2014

Remove the error tuple return value for middlewares
‘essen authored on Sep 24, 2014

B csebada O

Remove the onrequest hook = &
essen authored on Sep 24, 2014

aaddeéb <>

Comits on Jul 12, 2014

i Reply with 400 on header parsing crash = & | sranes
essen authored on Jul 12, 2014 E

Comits on Jul 7, 2014

Merge branch 'fix-spdy-parse-frame of git:/github.com/voluntas/cowboy = &
‘essen authored on Jul 7, 2014 -

fda23eb

Comits on Jun 28, 2014

(3 Fix cowboy_spdy parse frame &
Volunias authored on Apr 20, 2014

fec335s

Comits on Jun 10, 2014

! Fix specs and a weird value in cowboy_spdy B [7esece | [0
essen authored on Jun 10, 2014 E

Cowboy + SPDY

SPDY defines advanced (optional) features:

Server push

Multiple replies to a client for a single request

Rate limiting
SETTINGS frame
SETTINGS MAX CONCURRENT STREAMS parameter

Max number of concurrent streams that sender will allow (directional, and defaulted to unlimited)

Flow control
WINDOW UPDATE frame

Integer limiting how many bytes of data sender is allowed to transmit

Cowboy + SPDY

We forked ninenines/cowboy -> layerhg/cowboy

Implementation of advanced protocol features (SPDY v.3.1)
Server push
Flow control

Rate limiting (PR submitted)

https://github.com/ninenines/cowboy
https://github.com/layerhq/cowboy

Message Routing

Layer’'s messaging platform
publishes every single message
to a RabbitMQ broker.

send_message(Channel, Exchange, RoutingKey, Headers, Body, DeliveryMode) —
UglyHeaders = proplist_to_amqp_headers(Headers),
amgp_channel:cast(Channel,
#'basic.publish'{exchange=Exchange, routing_key=RoutingKey},
#amqp_msg{props=#'P_basic'{headers=UglyHeaders,
delivery_mode=DeliveryMode},
payload=Body}).

RabbitMQ

. sk, D — [H:Rabbit'\/@]

When a device connects to Layer,
a queue for that device is
created.

declare_queue(Channel, Queue, Args) —
Declare = #'queue.declare'{queue=Queue, arguments=proplist_to_amqp_headers(Args)},
#'queue.declare_ok'{message_count=MessageCount,
consumer_count=ConsumerCount} = amgp_channel:call(Channel, Declare),
{MessageCount, ConsumerCount}.

consume_queue(Channel, Queue, Args) —>
NoAck = proplists:get_value(no_ack, Args, false),
Sub = #'basic.consume'{queue=Queue,
no_ack=NoAck,
arguments=proplist_to_amgp_headers(proplists:delete(no_ack, Args))},
#'basic.consume_ok'{consumer_tag=ConsumerTag} = amgp_channel:call(Channel, Sub),
ConsumerTag.

RabbitMQ

B Rabbit VIO

SPDY

RabbitMQ

B Rabbit VIO

)

/

SPDY

RabbitMQ

SPDY

B Rabbit VIO

v

- 2 ,

RabbitMQ

B Rabbit VIO

SPDY

There Is a process per connected
device that consumes messages
from that device’s queue.

% Got a message
handle_info({#'basic.deliver'{delivery_tag=DeliveryTag, consumer_tag=ConsumerTag},
#amgp_msg{props=#'P_basic'{headers=Headers}, payload=Body}},
#state{module=Module, substate=SubState}=State) —>
HeadersProplist = ecu_rabbit:amqp_headers_to_proplist(Headers),
{ok, NewSubState} = case erlang:function_exported(Module, handle_dequeue, 5) of
true —> Module:handle_dequeue(DeliveryTag, ConsumerTag, HeadersProplist, Body, SubState);
false —> Module:handle_dequeue(DeliveryTag, HeadersProplist, Body, SubState)
end,
{noreply, State#state{substate=NewSubState}};

When that happens,
messages are delivered through
SPDY server push.

spdy_push(AppId, Req, Headers, Body, #state{version_codec=VersionCodec, format_codec=FormatCodec}) —>

= : (path,),
= : (reason, |),
V = (’) ’
= ()
{ ’ } -> H
{ ’ } ->
{ y T } = 1 (,
post_évent_response,
)
(: (v ’ .
get_event, ' '
{ok, , false, T }))
rt = : (alert,),

lager:info("Sending transport push for ~s event at ~s with alert ~p.",
[Reason, Path, Alert]),
exopose:rincr([tmc, push, status, 200]),
cowboy_req:push_reply(200, Path, [{<<"layer-ack">>, <<"Ack">>}], PushBody, Req).

Example: let’'s assume a 4-device
conversation...

RabbitMQ - Transport pushes

SPDY

))
__ BhRabbitMQ
SPDY
—— —> ‘\n$:.>
TN
\ %

RabbitMQ - Transport pushes

SPDY

))
__ BhRabbitMQ
POST N —P>
TN
\ %

RabbitMQ - Transport pushes

SPDY

))
__ BhRabbitMQ
D
TN
\ %

RabbitMQ - Transport pushes

SPDY

))
__ BhRabbitMQ
SPDY
—— —> ‘\“*¥:.>
TN
\ %

RabbitMQ - Transport pushes

SPDY

))
__ BhRabbitMQ
SPDY
—— —> ‘\n$:.>
TN
\ %

What if target devices
are not connected?

There are no queues
for these devices...

RabbitMQ

' - D
—

— [H:RabbitMQ]

RabbitMQ

SPDY / \
=, — | MhRabbitVi0
=

- J

RabbitMQ

4)
— > — | BhRabbitVIO
HEEE

- J

RabbitMQ

SPDY / \
=, — | MhRabbitO
<1<

<1<

o e e
. %

RabbitMQ

(-)

R <1< —
<1<

<1<

<1< < A

<1<

o e e
. %

...but they need to be
notified regardless.

Devices get platform pushes,
for which there’s a match-all
binding queue.

RabbitMQ - Platform pushes

GCM

)
)
BhRabbitVO /
o D
T e

That’s pretty cool, but how do
we manage connectivity
resources”?

o

=% s

M

v
[N

Bratia

Ll

SPDY connections

ranch server.erl does the job (ninenines/ranch)

gen server that manages connections, listeners, and ports

> ranch server:count connections/1

https://github.com/ninenines/ranch

SPDY connections

Active connections
5000.0

4500.0

4000.0

3500.0

3000.0

2500.0

2000.0

1500.0
Tue 4AM Tue BAM Tue 12PM Tue 4PM Tue 8PM Wed 12AM
B Nodetmc.l Current:3421 Max:4893 Min:2050 B Node tmc.2 Current:3346 Max:4932 Min:1956

M Nodetmc.3 Current:3341 Max:4975 Min:1946 [Node tmc.4 Current:3480 Max:4946 Min:1944
W Nodetmc.5 Current:3460 Max:5003 Min:1828

How about AMQP
connectivity?

AMQP Connection & Channel Pooling

2 types of resources

Connections (actual TCP connections)

Channels (Lightweight connection)

2-layer pooling system
conn 1

chann 1

chann N

~spec add_node({string(), inet:port_number()}) -> ok | {error, term()}.
add_node({Host, Port}) —>
App = gen_server:call(?MODULE, get_app),
Count = application:get_env(App, ecu_rabbit_connection_count, 2),
%% Culling connections will kill their channels, so don't.
pooler:new_pool([{name, connection_pool_name(Host, Port)},
{max_count, Count},
{init_count, Count},
{cull_interval, {0, min}},
{start_mfa, {?MODULE, start_connection, [Host, Portl}}]).

start_connection(Host, Port) —>

Params = #amqp_params_network{host=Host, port=Port},
case amgp_connection:start(Params) of
{ok, ConnectionPid} = Result —>

%% Tell the gen_server to start a channel pool for the connection.
?MODULE ! {connection_started, ConnectionPid},
%% Monitor the connection so that, when it dies, the gen_server can
%% remove the channel pool started here.
monitor(process, ConnectionPid),
Result;

Error —>
Error

end.

handle_info({connection_started, ConnectionPid}, #state{app=App}=State) ->
%% Culling channels will kill their connection, so don't.
pooler:new_pool([{name, channel_pool_name(ConnectionPid)},
{group, ?GROUP},
{max_count, application:get_env(App, ecu_rabbit_channel_max_count, 65535)},
{init_count, application:get_env(App, ecu_rabbit_channel_init_count, 10)},
{cull_interval, {0, min}},

{start_mfa, {amqp_connection, open_channel, [ConnectionPid]l}}]),
{noreply, State};

Data Infrastructure

Data Infrastructure

Apache Cassandra

Apache Kafka

ekaf (erlang client for Kafka)
Apache ZooKeeper

Apache Spark

Consumers

Spark Streaming and SQL

Apache Cassandra

Online Datastore
Apps management
Access control
Session management
Messages and events store

Metrics datastore

Data Infrastructure

Presentation

Browser

T

Nods.js

(Stats Server)

NN EEEEN NN EEEE NN NN RN RRNNENNNEy
SsEmmsEEEEEEEEEEEEEEEEREEEREEEEEER

"

Services

Publish
every metric

A4

Publish
every metric

>
Cassandra s

Apache _ 4 Counts
Cluster

Kafka Consumers - Cassandlta-

-
%
-
-
-
g
-

v

Publish
every metric

v

Data Producers (No Data Freeway (Distributed pub-sub messaging
local aggregation) system + Consumer)

EE NN NN NN NN NN NN NN NN RN NN RN NN NRREE
AN EEEE NN NN NN NN NN NN NN NN ENNNNRNNENEREE

Spark - Data
Processing for
summary /
aggregates

ekaf, an Erlang client for Kafka

github.com/helpshift/ekaf

High-performance

Producer of events and metrics

Asynchronous and Batching

Stream messaging metrics
message sent, message delilvered, message read
active user, auth error, push notifications

sdk version, app metric, user metric

https://github.com/helpshift/ekaf
https://github.com/helpshift/ekaf

Apache Kafka

Distributed, partitioned, replicated commit-log (Pub-sub)
Stores messaging events and metrics

Data freeway

Multiple topics (multiple partitions per topic)

Replication Factor = 3

Application logs (in the works)

Apache Spark

Lightning fast engine for large-scale data processing

Aggregation Jobs (MAU, DAU, SDK/Device segregation, Summary,
Pipeline for Data service)

Spark Streaming: Near real-time event processing for analytics to
serve customer dashboards

Spark SQL: Ad-hoc queries for business team

Tools: Data validation and migration (in the works)

Performance

Performance

http://erlang.org/pipermail/erlang-questions/2015-January/082758.html

[erlang-questions] Garbage Collection, BEAM memory and Erlang memory

Roberto Ostinelli <roberto@uidetag.con>
Thu Jan 22 17:33:57 CET 2015

* Previous message: [erlang-questions] cowboy_router weird availability error
« Next message: [erlang-questions] Garbage Collection, BEAM memory and Erlang memory
« Messages sorted by: [date] [thread] [subject] [author]

Dear List,

I'm having some troubles in pinpointing why a node is crashing due to
memory issues.

For info, when it crashes, it does not produce a crash dump. However I've
monitored live and I've seen the .beam process eat up all memory until it
abruptly exits.

The system is a big router that relays data coming from TCP connections,
into other TCP connections.

I'm using cowboy as the HTTP server that initiates the long-lived TCP
connections.

I've done all the obvious:
- Checked the States of my gen_servers and processes.
- Checked my processes mailboxes (the ones with the longest queue have 1
item in the inbox).

- My ETS table memory is constant (see below).

I put the system under controlled load, and I can see with
length(processes()). that my process count is stable, always around 120,000.

I check the processes that are using most memory with this call:

http://erlang.org/pipermail/erlang-questions/2015-January/082758.html
http://erlang.org/pipermail/erlang-questions/2015-January/082758.html

Challenges

Memory issues

Cassandra driver

Erlang VM shutting down with ‘reached max restart instensity’
rebar and reproducible builds, rebar3?

Tradeoffs when forking popular Erlang repos

| essons learned

Avoid shutdown/max restart frequency copy behavior

supervisor2.erl by rabbitmg-server

Erlang GC optimizations — Abnormal heap growth

Monitor pretty much everything!
Count HTTP codes, memory, CPU, ...

Measure HTTP latencies (GET, POST, PATCH, ...)
Cassandra provides an eventually consistency latency of up to 10ms

Requires writing with explicit timestamp (behavior determined by clocks otherwise)
RabbitMQ & Pooler unexpected behaviors (culling feature)

lager - {error logger hwm, undefined}

http://hg.rabbitmq.com/rabbitmq-server/file/edb18ea119ce/src/supervisor2.erl
http://hg.rabbitmq.com/rabbitmq-server/file/edb18ea119ce/src/supervisor2.erl

Lessons learned — Abnormal heap growth

tmc.1-Erlang VM memory

3000.0M 1206
2500.0 M 100G
2000.0 M \—/\« 80G
1500.0 M 6.06G

~ [e
1000.0M T 406G

500.0M \//
——

tmc.3-Erlang VM memory

i | L B

0 0
01/29 12AM 0129 12PM Wed 8PM Thul2AM Thu 4AM Thu 8AM Thul2PM Thu 4PM
M Bytes allocated for ETS tables M Bytes allocated for ETS tables
[Bytes allocated for binaries [Bytes allocated for binaries
M Bytes allocated for atoms M Bytes allocated for atoms
[Bytes allocated by Erlang processes [l Bytes allocated by Erlang processes
M Bytes allocated by Erlang emulator M Bytes allocated by Erlang emulator

tmc.4-Erlang VM memory
15.06G

125G
100G
756
506G

256

0 — L= — —

Wed 8PM Thul2AM Thu 4AM Thu 8AM Thul2PM Thu 4PM

M Bytes allocated for ETS tables

I Bytes allocated for binaries

M Bytes allocated for atoms

[Bytes allocated by Erlang processes
W Bytes allocated by Erlang emulator

Lessons learned — Abnormal heap growth

Facts:

Huge error logger heap

NHATRTHEH

Lessons learned — Abnormal heap growth

shift.4 - Erlang VM memory
886G

756G P
62G
50G
386G
256G

126G

0
11:40 12:00 12:20 12:40 13:00 13:20

B Bytes allocated for ETS tables

B Bytes allocated for binaries

[] Bytes allocated for atoms

[Bytes allocated by Erlang processes
M Bytes allocated by Erlang emulator

Lessons learned — Abnormal heap growth

Facts:
Huge error logger heap
Shrinks to nothing if GC kicks

Lessons learned — Abnormal heap growth

Hypothesis:
Large burst of messages to the process, e.g: 100 000
If process kicks GC when those messages are in queue, it will make a copy to
its heap (This is done as an optimization)
The (possibly) bad side effect is that the young heap will have to be grown to
fit all messages
GC will be triggered which releases all messages as they have been logged
leaving the heap very large
The heap shrinking algorithm will not kick until a 2nd GC

Since the heap is very large, it will take a long time for that second GC to kick

Ta)

Lessons learned — Abnormal heap growth

Outcomes:

You end up with an abnormally large heap for error logger.

Lessons learned — Abnormal heap growth

shift.4 - Erlang VM memory
200G

150G

100G e J A

506G

14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00
W Bytes allocated for ETS tables M Bytes allocated for binaries M Bytes allocated for atoms [Bytes allocated by Erlang pr M Bytes allocated by Erlang emulator

Lessons learned — Abnormal heap growth

Solutions:
Monitor the process that you know can have this problem

Trigger a GC on them when needed

> erlang:system monitor ({large heap, integer () >=0})

Reference: Exploring Garbage Collection implementation in Erlang (Lukas Larsson,

Erlang Solutions).

https://dl.dropboxusercontent.com/u/6250179/gc-docs.pdf

Lessons learned — Abnormal heap growth

shift.4 - Erlang VM memory
1756

150G

125G

10.0G

756G

506

256G

1251 1252 12:53 12:54 1255 1256 12:57 12:58 12:59 13:00 1301 13:02
es allocated for ables es allocated for binaries ytes allocated for atoms ytes y Erlang pr es allocated by Erlang emulator
Ws llocated for ETS tabl Ws llocated for binari Hs llocated for at: Ws llocated by Erl s llocated by Erl lat:

Lessons learned — Monitor your system!

Active connections

30.0K

25.0K

20.0K

15.0K

10.0K

5.0K d NS ' N =

03/06 03/07 03/08 03/09 03/10 0311 03/12

B nodetmc.l Current:6542 Max:14881 Min: 4 B Node tmc.2 Current:9700 Max:27044 Min: O
B ntodetme.3 Current:9622 Max:27058 Min:29 [Node tmc.4 Current:9612 Max:27108 Min:29
. Node tmec.5 Current:6386 Max:14372 Min:21

Lessons learned — Monitor your system!

tmc.1-response-status tmc.2-response-status
90.0 105.0
75.0 90.0
75.0
60.0
60.0
45.0
45.0
30.0
30.0
15.0 15.0
0 — —_ _ = 0 e —
03/06 0307 03/08 0309 0310 0311 0312 03/06 03/07 03/08 0309 03710 0311 0312
M TotalIn M 200 0k M TotalIn W 200 0k
M 408 Request Timeout] 409 Conflict M 408 Request Timeout] 409 Conflict
W 503 Service Unavailable [] 410 Gone W 503 Service Unavailable [] 410 Gone
tmc.3-response-status tmc.4-response-status tmc.5-response-status
90.0 84.0
75.0
60.0
45.0
30.0
15.0
0 - 1 1 - - 1
03/06 03/07 0308 03/09 0310 0311 0312 03/06 03/07 03j08 03/09 03/06 03/07 03(08 03/09 03(10 0311 0312
W Totalin M 200 0k M TotalIn M 200 0k M Totalin W 200 ok
408 Request Timeout [409 Conflict 408 Request Timeout [409 Conflict M 408 Request Timeout [409 Conflict
B 503 Service Unavailable [| 410 Gone B 503 Service Unavailable [| 410 Gone B 503 Service Unavailable [| 410 Gone

Lessons learned — Monitor your system!

x
ctrl.1 - Authentication ctrl.2 - Authentication
120.0 120.0
100.0 100.0
80.0 80.0
0.0 60.0
40.0 40.0
20.0 20.0

0 MWMWM
03/06 03/07 03/08 03/09 03/10 03/11 03/12

M Total requests Current:67 Max:166 Min: 0
. Successes/sec Current:66 Max:162 Min: 0
. Errors/sec Current: 0 Max:11 Min: 0

0 v aban st WM“\MM
03/06 03/07 03/08 03/09 03/10 03/11 03712

M Total requests Current:67 Max:193 Min: 0
. Successes/sec Current:67 Max:190 Min: 0
. Errors/sec Current: 0 Max:11 Min: 0

Lessons learned — Monitor your system!

tmc.3-auth-status tme.3-Erlang VM memory
35.0 7.2G
30.0 606G
25.0 580
366G
20.0
246G
15.0
126G
m
10.0 0
50 Wed 4AM Wed 8AM Wed 12PM Wed 4PM Wed 8°PM Thu 12AM
1 Bytes allocated for ETS tables
0 M Bytes allocated for binaries
Wed 4AM Wed 8AM Wed 12PM Wed 4PM Wed 8PM Thu 12AM M Bytes allocated for atoms
[Bytes allocated by Erlang processes
M 500 Internal Server Error [l 403 Forbidden B Bytes allocated by Erlang emulator
B 401 Unauthorized [406 Not Acceptable

Open source contributions

Merged to upstream:

github.com/ferd/backoff — Jitter based exponential backoff

github.com/seth/pooler — Anticipatory growth

github.com/layerhg/cgerl — Several bug fixes

Layer forks:

github.com/layerhg/cowboy — SPDY server push, flow control, rate limiting

github.com/layerhg/gcm_ccs:layer-non-singleton — Protocol upgrades

github.com/layerhg/apns4erl — Protocol upgrades

github.com/layerhg/thrift-erl — General improvements

...and many more! https://github.com/layerhqg

https://github.com/ferd/backoff
https://github.com/ferd/backoff
https://github.com/seth/pooler
https://github.com/seth/pooler
http://github.com/layerhq/cqerl
http://github.com/layerhq/cqerl
https://github.com/layerhq/cowboy
https://github.com/layerhq/cowboy
https://github.com/layerhq/gcm_ccs
https://github.com/layerhq/gcm_ccs
http://github.com/layerhq/apns4erl
http://github.com/layerhq/apns4erl
https://github.com/layerhq/thrift-erl
https://github.com/layerhq/thrift-erl
https://github.com/layerhq

Questions?

