
Xorshift* and Erlang/
OTP: Searching for

Better PRNGs

Kenji Rikitake / Erlang Factory SF Bay 2015 1

Kenji Rikitake

27-MAR-2015
Erlang Factory SF Bay 2015
San Francisco, CA, USA
@jj1bdx

Professional Internet Engineer

ACM Erlang Workshop 2011 Workshop
Chair

Erlang Factory SF Bay 2010-2015
speaker (for six consecutive years!)

Kenji Rikitake / Erlang Factory SF Bay 2015 2

Executive summary:
do not try inventing

your own random
number generators!

Kenji Rikitake / Erlang Factory SF Bay 2015 3

PRNGs matter
• The first talk of pseudo random number generators in

Erlang Factory events was on 2011

• Now four years later, people are still using the good-old
random module, already fully exploited. We should stop
using it!

• So I decided to do the talk again with new algorithms, and
the talk is accepted

Kenji Rikitake / Erlang Factory SF Bay 2015 4

PRNGs are everywhere
• Rolling dice (for games)

• (Property) testing (QuickCheck, ProPer, Triq)

• Variation analysis of electronic circuits

• Network congestion and delay analysis

• Risk analysis of project schedules

• Passwords (Secure PRNGs only!)

Kenji Rikitake / Erlang Factory SF Bay 2015 5

Variation analysis of a band pass
filter

Kenji Rikitake / Erlang Factory SF Bay 2015 6

Without variance

Kenji Rikitake / Erlang Factory SF Bay 2015 7

With 10% variance

Kenji Rikitake / Erlang Factory SF Bay 2015 8

How PRNG works
• Sequential iterative process

• For multiple processes, seeds and other parameters should
be chosen carefully to prevent sequence overlapping

% Give a seed S1
{Result1, S2} = prng(S1),
{Result2, S3} = prng(S2),
% ... and on and on

Kenji Rikitake / Erlang Factory SF Bay 2015 9

NOT in this talk: Secure PRNGs
• For password and cryptographic key generation with strong

security

• Use crypto:strong_rand_bytes/1

• Remember entropy gathering takes time

• This is cryptography - use and only use proven algorithms!
Do not invent yours!

Kenji Rikitake / Erlang Factory SF Bay 2015 10

In this talk: non-secure PRNGs
• May be vulnerable to cryptographic attacks

• (Uniform) distribution guaranteed

• Predictive: same seed = same result

• Lots of seed (internal state) choices

• Long period: no intelligible patterns

Kenji Rikitake / Erlang Factory SF Bay 2015 11

Even non-secure PRNGs fail
• Found from the observable patterns by making a graphical

representation

• Very short period of showing up the same number
sequence again

• Even a fairly long sequence of numbers can be fully
exploited and made predictable

Kenji Rikitake / Erlang Factory SF Bay 2015 12

PHP5 on Windows (2012)

Kenji Rikitake / Erlang Factory SF Bay 2015 13

Other PRNG failures
• Cryptocat 2013 (blue: OK, red: bad)

Kenji Rikitake / Erlang Factory SF Bay 2015 14

https://nakedsecurity.sophos.com/2013/07/09/anatomy-of-a-pseudorandom-number-generator-visualising-cryptocats-buggy-prng/

Erlang/OTP's first ever security
advisory
• ... was about PRNG! (R14B02, 2011)

• US CERT VU#178990: Erlang/OTP SSH library uses a weak
random number generator (CVE-2011-0766)

• Used random non-secure PRNG for the SSH session RNG
seed, easily exploitable

Kenji Rikitake / Erlang Factory SF Bay 2015 15

http://www.kb.cert.org/vuls/id/178990
http://www.cvedetails.com/cve/CVE-2011-0766/

Erlang random's problem
• The algorithm AS183 is too old (designed in 1980s for 16-

bit computers)

• Period: 6953607871644 ~= 2^(42.661), too short for
modern computer exploits

• Fully exploited in < 9 hours on Core i5 (single core) (my C
source) - Richard O'Keefe told me this was nothing new in
either academic and engineering perspectives (he is right!)

Kenji Rikitake / Erlang Factory SF Bay 2015 16

https://github.com/jj1bdx/as183-c
https://github.com/jj1bdx/as183-c

Alternative Erlang PRNGs
• sfmt-erlang (SFMT, 2^19937-1, 32-bit)

• tinymt-erlang (TinyMT, 2^127-1, ~2^56 orthogonal
sequences, 32-bit)

• exs64 (XorShift*64, 2^64-1, 64-bit)

• exsplus (Xorshift+128, 2^128-1, 64-bit)

• exs1024 (Xorshift*1024, 2^1024-1, 64-bit)

Kenji Rikitake / Erlang Factory SF Bay 2015 17

https://github.com/jj1bdx/sfmt-erlang
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
https://github.com/jj1bdx/tinymt-erlang
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/index.html
https://github.com/jj1bdx/exs64
http://xorshift.di.unimi.it/
https://github.com/jj1bdx/exsplus
http://xorshift.di.unimi.it/
https://github.com/jj1bdx/exs1024
http://xorshift.di.unimi.it/

SFMT
• Mersenne Twister: default PRNG on Python, MATLAB, C+

+11, R, etc.

• Internal state: 624 32-bit integers (2496 bytes)

• SIMD-oriented Fast Mersenne Twister (SFMT) = MT
improved

• Extremely long period (2^19937-1, longer variants
available)

Kenji Rikitake / Erlang Factory SF Bay 2015 18

sfmt-erlang: on NIFs
sfmt-erlang gains a lot by NIFs because:

• It needs bulk state initialization (624 x 32-bit)

• NIFnizing it makes total execution time ~16 times faster (on
FreeBSD, OTP 17.4.1)

• Execution time of state initialization: ~100 times faster
(~1600 -> ~15 microseconds)

Kenji Rikitake / Erlang Factory SF Bay 2015 19

TinyMT
• Tiny Mersenne Twister for restricted resources

• Shorter but sufficient period (2^127-1)

• 127-bit state + three 32-bit words for the polynomial
parameters

• ~2^56 choice of orthogonal polynomials, suitable for
parallelism

• On Erlang: non-NIF only
Kenji Rikitake / Erlang Factory SF Bay 2015 20

tinymt-erlang: on NIFs
tinymt-erlang did not gain much from NIFs presumably
because:

• No bulk initialization, state calculation complexity is small

• Most of execution time: function calling overhead

• In NIFs, sfmt-erlang was faster for generating a large
sequence

Kenji Rikitake / Erlang Factory SF Bay 2015 21

So are NIFs effective?
• Not really, unless processing a bulk generation/computation

• Remember NIFs block the scheduler

• If NIFs are not needed, don't use them

• If NIFs are really needed, tuning the scheduler is inevitable -
ask the gurus for the details

Kenji Rikitake / Erlang Factory SF Bay 2015 22

Xorshift*/+ algorithms
• Marsaglia's Xorshift, output scrambled by the algorithm of

Sebastiano Vigna for the best result against TestU01
strength test

• Xorshift64*, Xorshift128+, Xorshift1024* are so far the most
practical three choices

• C code in public domain

• Deceptively simple

Kenji Rikitake / Erlang Factory SF Bay 2015 23

http://www.jstatsoft.org/v08/i14/
http://xorshift.di.unimi.it/
http://xorshift.di.unimi.it/
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html

Xorshift64*
% See https://github.com/jj1bdx/exs64
-type uint64() :: 0..16#ffffffffffffffff.
-opaque state() :: uint64().
-define(UINT64MASK, 16#ffffffffffffffff).
-spec next(state()) -> {uint64(), state()}.
next(R) ->
 R1 = R bxor (R bsr 12),
 R2 = R1 bxor ((R1 bsl 25) band ?UINT64MASK),
 R3 = R2 bxor (R2 bsr 27),
 {(R3 * 2685821657736338717) band ?UINT64MASK, R3}.

Kenji Rikitake / Erlang Factory SF Bay 2015 24

Xorshift1024* (1/2)
% See https://github.com/jj1bdx/exs1024
-type uint64() :: 0..16#ffffffffffffffff.
-opaque seedval() :: list(uint64()). % 16 64-bit integers
-opaque state() :: {list(uint64()), list(uint64())}.
-define(UINT64MASK, 16#ffffffffffffffff).
%% calc(S0, S1) -> {X, NS1} / X: random number output
-spec calc(uint64(), uint64()) -> {uint64(), uint64()}.
calc(S0, S1) ->
 S11 = S1 bxor ((S1 bsl 31) band ?UINT64MASK),
 S12 = S11 bxor (S11 bsr 11),
 S01 = S0 bxor (S0 bsr 30),
 NS1 = S01 bxor S12,
 {(NS1 * 1181783497276652981) band ?UINT64MASK, NS1}.

Kenji Rikitake / Erlang Factory SF Bay 2015 25

Xorshift1024* (2/2)
-spec next(state()) -> {uint64(), state()}.
% with a ring buffer using a pair of lists
next({[H], RL}) ->
 next({[H|lists:reverse(RL)], []});
next({L, RL}) ->
 [S0|L2] = L,
 [S1|L3] = L2,
 {X, NS1} = calc(S0, S1),
 {X, {[NS1|L3], [S0|RL]}}.

Kenji Rikitake / Erlang Factory SF Bay 2015 26

Performance implications
• HiPE highly recommended

• Handling full 64-bit numbers means handling BIGNUMs and
slow; short integers are up to (2^59)

• exs64: < x2 execution time of random

• exs1024: slower, but ~ x2 of random

• Speed penalty: worth being paid for

Kenji Rikitake / Erlang Factory SF Bay 2015 27

Suggested purposes for the
alternative PRNGs
• sfmt-erlang: proven, can be chosen in ProPer

• tinymt-erlang: proven, has ~268 million polynomial
parameters available at tinymtdc-longbatch

• exs64: replacement of AS183

• exsplus: an alternative to exs64

• exs1024: good choice for simulation
Kenji Rikitake / Erlang Factory SF Bay 2015 28

http://proper.softlab.ntua.gr/
https://github.com/jj1bdx/tinymtdc-longbatch

Merging to OTP (1/2)
• Dan Gudmundsson (of OTP Team) offered me to help

writing a multi-algorithm successor of random module

• exs64/plus/1024: MIT licensed (by me)

• sfmt-erlang/tinymt-erlang: BSD licensed

• All pieces of code had to be relicensed in Erlang Public
License to be included in OTP

Kenji Rikitake / Erlang Factory SF Bay 2015 29

Merging to OTP (2/2)
• It was expected to be called as new random, but the OTP

team didn't want it (presumably due to backward
compatibility issues), so it's called rand

• Project name: emprng

• random-compatible functions currently available for the six
algorithms: as183, exs64 (default), exsplus, exs1024, sfmt,
tinymt

Kenji Rikitake / Erlang Factory SF Bay 2015 30

https://github.com/jj1bdx/emprng

Future directions
• Keep promoting banning/deprecating the good-old random

module and use something else that is much better (try
exs64)

• Merge emprng to OTP: more algorithms, user-supplied
functions, tests

• Analyze performance implication on large-scale
applications

Kenji Rikitake / Erlang Factory SF Bay 2015 31

https://github.com/jj1bdx/exs64

Thanks
Questions?

Kenji Rikitake / Erlang Factory SF Bay 2015 32

