Beautiful Tests

by Bruce A. Tate
can better

It’s good to be here... | almost wasn'’t.

Test
all of your code
wilth
beautiful,
dry,
fast
tests

Test
your code

Many of us come from a testing culture... that’s good.
Testing tools are in their infancy... that’s bad.

This talk is about a set of band aids we added to existing tools until ExUnit can come around.

Test
all of your code

1f 1t 1s worth writing

1f 1t 1s worth writing
1t 1s worth testing

don’t let your customers
test your code

we use excoveralls

https://github.com/parroty/excoveralls

setup

defmodule Chat.Mixfile do
defp deps do
[{:excoveralls, only: :test}]
end

defp test(args) do
Mix.Task.run("test", [])

Mix.shell.info("")
Mix.shell.info("$ mix coveralls
- coverage overview")
Mix.shell.info("$ mix coveralls.detail FILENAME
- line-by-1line coverage of file")
end

defp cli_env do
[coveralls: :test,
"coveralls.detail”: :test]
end

end https://gist.github.com/batate/fd9e7569b386 1a80a0b3

report

[imbe] (develop=) = mix coveralls
Compiled lib/chat/room_supervisor.ex
Compiled lib/chat.ex

Compiled lib/chat/attachment_cache.ex
Compiled lib/chat/socket/handler.ex
Compiled lib/chat/room.ex

Generated chat.app

Finished in 8.1 seconds (2.4s on load, 5.6s on tests)
101 tests, 0@ failures

Randomized with seed 167783

cov FILE LINES RELEVANT MISSED
100.0% 1lib/chat.ex 98 18 0
100.0% 1lib/chat/attachment_cache.ex 221 81 0
100.0% 1ib/chat/crypto.ex 47 17 0
100.0% 1lib/chat/http/process.ex 34 13 7]
100.0% 1ib/chat/models.ex 16 4 0
100.0% 1ib/chat/models/company.ex 89 1 0
100.0% 1ib/chat/models/multi_attachment.ex 45 13 0
0.0% 1ib/chat/models/page.ex 11 (/] /]
100.0% 1ib/chat/models/survey.ex 83 4 /]
100.0% 1ib/chat/models/survey_question.ex 80 12 /]
100.0% 1lib/chat/models/survey_response.ex 66 8 /]
0

100.0% 1ib/chat/models/token.ex 51 8

This is hard to read unless you have zeros on the right hand side!

100.
100.

Q.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
100.

Q.
100.
100.
100.
100.
100.
100.
100.
100.
100.
[TOTAL] 100.0%

0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%

$ mix coveralls

1ib/chat/models/company.ex
1ib/chat/models/multi_attachment.ex
1ib/chat/models/page. ex
1ib/chat/models/survey.ex
1ib/chat/models/survey_question.ex
1ib/chat/models/survey_response.ex
1ib/chat/models/token.ex
1ib/chat/models/user.ex
1ib/chat/mongo.ex
1ib/chat/mongo/cursor.ex
1ib/chat/mongo/model . ex
1ib/chat/mongo/process.ex
1ib/chat/mongo/query.ex
1ib/chat/mongo/worker .ex
lib/chat/repo.ex

1ib/chat/room.ex
lib/chat/room_supervisor.ex
1ib/chat/router.ex
1ib/chat/socket.ex
lib/chat/socket/handler.ex
lib/chat/socket/process.ex
1ib/chat/socket/sockjs.ex
lib/chat/topic.ex
lib/chat/topic/gc.ex

- coverage overview
$ mix coveralls.detail FILENAME - line-by-line coverage of file

89
45
11
83
80
66
51
80
118
92
105
176
54
75
14
786
29
15
20
363
87
62
167
46

329

169
25
20
41
13

[SESTC GRS IS GG RGBS B GRS I G G IS BN GS I CS IS I G S NG I ST N

The bottom line makes it easier for our devs to do the right thing.

detailed report

defp receive_nonmember(false, conn, s, chat) do
room = Room.join(s.room, chat, s.user, s.token)

if s.role != "admin" do
Filter unpublished questions
questions = Enum.filter(room.questions, & &1.published)

Filter hidden messages
questions =
Enum.map(questions, fn question ->
answers = Enum.reject(question.answers, & &1.hidden)
%{question | answers: answers}
end)

Filter blocked members

Test
all of your code
with ?°?°?

tests

When we decided to code Elixir for our production servers, we had a decision to make.
want a good elixir... compressed schedules

Think Philosophy,
not the Tool Box

We want to show you real code so that means context. But the tool set doesn’t matter.
That said...

We use...

*ExUnit
e ShouldI (batate/shouldi)

eRBlacksmith (batate/blacksmith)

We hope to push as much of this into shouldi as possible

We use...

*ExUnit (our goal: 100%)
e ShouldI (batate/shouldi)

eRBlacksmith (batate/blacksmith)

Oh... About Exunit

+ Fast
+ Pretty Assertions
+ Templates

Oh... About Exunit

+ Fast
+ Pretty Assertions
+ Templates

— Not Dry
— Chaotic
— Language / Syntax

Oh... About Exunit

Fast
Pretty Assertions
Templates

+ + +

— Not Dry

—wNat Yet'

Our goal is to work directly with the core team to improve tests where we can help.

setup do

universal setup
end
test "a get" do

end

test "logged in get" do
login_user

end

test "logged in post" do
login_user

end

setup do

universal setup
end
test "a get" do

end

test "logged in get" do
login_user

end

test "logged in post" do
login_user

end

setup do
universal setup
end

test "a get" do

end

test "logged in get" do
login_user

end

test "logged in post" do
login_user

end

setup do
universal setup
end

test "a get" do
end

test "logged in
login_user

end

P

teSt "logg
IOg}n_user .

end

This becomes a big problem as overarching tests get nested.
in models: persistent vs not; error vs happy path; etc.
So setup code can be a big pain

a horror story

test "gets and updates many levels deep dependencies™ do

Mix.Project.push DepsOnGitApp

in_fixture "no_mixfile", fn ->

Mix.Tasks.Deps.Get.run []

message = "* Getting git_repo (#{fixture_path("git_repo")})"

assert_received {:mix_shell, :info, [“message]}

message = "* Getting deps_on_git_repo (#{fixture_path("deps_on_git_repo")})"

assert_received {:mix_shell, :info, [“message]}

assert File.exists?("deps/deps_on_git_repo/mix.exs")

assert File.rm("deps/deps_on_git_repo/.fetch") == :ok

assert File.exists?("deps/git repo/mix.exs")

Testing is good, but it’'s not enough to test.
This test is from the Elixir framework. This test is more insufficient tooling.

Compile git repo but unload it so...
Mix.Tasks.Deps.Compile.run ["git_repo"]
assert File.exists?("_build/dev/1lib/git_repo/ebin")

Code.delete_path("_build/dev/1lib/git_repo/ebin")

Deps on git repo loads it automatically on compile
Mix.Task.reenable "deps.loadpaths"
Mix.Tasks.Deps.Compile.run ["deps_on_git repo"]
assert File.exists?("_build/dev/1lib/deps_on_git repo/ebin™)
end
after
purge [GitRepo, GitRepo.Mix]

end

You can see that the test creator wants to do the right thing, but can't.

Compile git repo but unload it so...
Mix.Tasks.Deps.Compile.run ["git_repo"]
assert File.exists?("_build/dev/1lib/git_repo/ebin")

Code.delete_path("_build/dev/1lib/git_repo/ebin")

Deps on git repo loads it automatically on compile
Mix.Task.reenable "deps.loadpaths"
Mix.Tasks.Deps.Compile.run ["deps_on_git repo"]
assert File.exists?("_build/dev/1lib/deps_on_git repo/ebin™)
end
after
purge [GitRepo, GitRepo.Mix]

end

But the framework is fighting against him.

We are going to stamp this chaotic.

Mix.Tasks.Deps.Compile.run ["git_repo"]

assert File.exists?("_build/dev/1ib7git repo/ "y @
L
Code.delete_path("_build/dey/1ib/git_ rgfe/ebl

>

pur'geGitRepo, GitRepo.Mix]

end

It violates principles of coupling and single purpose.
Also, the reporting can’t help us out as much as it should

+ + +

I+

Shouldi

Fast
Pretty Assertions
Templates—-Code

Noet Dry
Chaotie Beautiful
Language / Syntax

+ + +

I+

Rlacksmith

Fast
Pretty Assertions
Templates-Code and Data

Not Dry Data
Chaotte Beautiful Data
Language / Syntax

Beautiful is important.

Test
all of your code
with
beautiful,

tests

You see,

Tests are
first class citizens

Language Matters

Said another way, language shapes thought. Syntax shapes language.

test "chat" do
chat = Chat.create(...)

assert something about chat
end

Why do we get names like this over and over?
Because the language of “test” isn’t strong enough.

The language is for the designers of the framework, not the test.

test "chat" do
chat = Chat.create(...)

assert something about chat
end

The word we use here

test "chat"” do
chat = Chat.create(...)

assert something about chat
end

The word we use here

test "should create chat" do
chat = Chat.create(...)

assert something about chat
end

should language improves the thought process: single purpose experiment.

should "create chat" do
chat = Chat.create(...)

assert something about chat
end

Push this language into the framework
and we’ll be reminded to give all tests better names
and a single purpose.

One Experiment,
Multiple Measurements

Our overarching philosophy: one experiment, multiple measurements.

test "chat" do

bucket = create_bucket

assert %{ struct : "Bucket"} = bucket

assert Bucket.empty?(bucket)

Bucket.add(bucket, 1)
assert bucket.contents == [1]

end

Multiple experiments, Multiple measurements

Tightly coupled, encourages abuse.

setup context do
assign bucket: create_bucket
end

should "create struct bucket", context do
assert %{__struct__: "Bucket"} = context.bucket
end

should "be empty", context do
assert Bucket.empty?(bucket)
end

should "add to bucket", context do
Bucket.add(bucket, 1)
assert bucket.contents == 1

end

should "remove from bucket", context ...

setup context do Our Experiment
assign bucket: create_bucket

end D) / :(

should "create struct bucket", context do
assert %{__struct__: "Bucket"} = context.bucket
end

should "be empty", context do
assert Bucket.empty?(bucket)
end

should "add to bucket", context do
Bucket.add(bucket, 1)
assert bucket.contents == 1

end

should "remove from bucket", context ...

This is a compromise. It will allow us to tailor some concepts in advance of changes in exunit

We can improve...

setup context do
assign bucket: create_bucket
end

should "create struct bucket", context do
assert %{__struct__: "Bucket"} = context.bucket
end

should "be empty", context do
assert Bucket.empty?(bucket)
end

should "add to bucket", context do
Bucket.add(bucket, 1)
assert bucket.contents == 1

end

should "remove from bucket", context ...

these should blocks are sometimes patterns that can be expanded through macros

setup context do
assign bucket: create_bucket
end

should_match_key :bucket, %{ _ struct__: "Bucket" }
should_match_key :bucket, %{ contents: [] }

should "add to bucket", context do
Bucket.add(bucket, 1)
assert bucket.contents ==

end

should "remove from bucket", context ...

In both forms, we have one experiment and multiple measurements.

Tests the context.

should_have_key
should_match_key

Or tests for Plug connection.

should_respond_with :success
should_render_template :index

Or any framework specific matchers...

In both forms, we have one experiment and multiple measurements.

We are selling our soul here... macros instead of functions.

Continues on Fail
Halts on Error

should_respond_with :success
should_render_template :index

In both forms, we have one experiment and multiple measurements.

We are selling our soul here... macros instead of functions.

Busliness apps need
Test Data

Busliness apps need
Beautiful Test Data

Remember, tests are first class citizens

FElixir makes
Beautiful Test Data

Flixir makes
Beautiful Test Data
until things get real

Persistence
Different formats JSON, structs, maps
of attributes

Persistence
Data issues can swallow tests

Blacksmith

Mostly just a functional library with a few key macros

Create structured data for tests

Blacksmith Templates

defmodule Forge do
use Blacksmith
register :user,
name: Faker.Name.first name,

description: Faker.Lorem.sentence

end

Faker is a library that creates fake data

defmodule Forge do
use Blacksmith
register :user,
name: Faker.Name.first name,

description: Faker.Lorem.sentence,

always_the_same: "string"

end

defmodule Forge do
use Blacksmith
register :user,

end

name: Faker.Name.first name,
email: Sequence.

next(:email, &"test#{&1}@example.com"),
description: Faker.Lorem.sentence,

always_the_same: "string"

Maybe you have a database backed test that should be isolated

In that test, email must be unique

defmodule Forge do

use Blacksmith

register :user,
name: Faker.Name.first name,
email: Sequence.

next(:email, &"test#{&1}@example.com"),

description: Faker.Lorem.sentence,
roles: [],
always the same: "string"

register :admin,
[prototype: :user],
roles: ["admin"]
end

Maybe some data should be based on other data
Second form of the register function has options (in the second position)

Blacksmith Config

defmodule Blacksmith.Config do
def save(repo, map) do
repo.insert(map)
end

def save _all(repo, list) do
Enum.map(list, &repo.insert/1)
end
end

Blacksmith Usage

user = Forge.user

user = Forge.saved user Models.User,
name: "Will Override™

admin = Forge.admin

admin = Forge.admin_list 5

Test
all of your code
with
beautiful,
dry,

tests

To have dry tests,
you need specialized setups
with nested context

Controller test

index
show
Create
configure

Controller test
logged 1n
index
show
Create
configure

logged out
index
show
create

Controller test
logged 1n
index
show
Create
configure
admin users
configure
show
logged out
index
show
create

Controller test
logged 1n
index
show
Create
configure
admin users
configure
show
logged out
index
show
create

test "Logged in admin user gets configure" do
part = Forge.saved_part(...)
conn = setup_connection
admin = Forge.saved_admin(...)
sign_in admin
conn = get conn, :configure
assert conn.status == 200
end

test "Logged in user user gets configure" do
part = Forge.saved_part(...)
conn = setup_connection
user = Forge.saved_user(...)
sign_in user
conn = get conn, :configure,
assert conn.status == 301
end

Too much duplication

test "Logged in admin user gets configure" do
part = Forge.saved_part(...)
conn = setup_connection
admin = Forge.saved_admin(...)
sign_in admin
conn = get conn, :configure
assert conn.status == 200
end

test "Logged in user user gets configure" do
part = Forge.saved_part(...)
conn = setup_connection
user = Forge.saved_user(...)
sign_in user
conn = get conn, :configure,
assert conn.status == 301
end

Too much duplication

with "a part and a connection" do
...setup for a connection and a part

with "a logged in user" do
...setup for logged in user

tests for logged in user

with "a logged in admin" do
...make the user an admin

tests for logged in admin

with "a get to configure" do
setup do
assign conn: get(:configure, context.part.id)
end

should_respond_with :success
should_render_template :configure
end

now the test is easy

Test
all of your code
wilth
beautiful,
dry,
fast
tests

1. Integration matters

Jose, you crack me up.

We were batting some test code back and forth over skype and emails. here’s Jose’s example

setup do
end
test "make breakfast" do
breakfast = make_the_toast breakfast

assert breakfast.taste == :good

breakfast = spread_the_cream breakfast
assert breakfast.taste == good

breakfast = be_sexy breakfast

end

No. This will deteriorate with time.
But maybe it takes a long time to make toast. So...

setup do
end

test "make breakfast" do

We have all written this test. But we can also see this test deteriorate with time.

But maybe it takes a long time to make toast. So... we live with the consequences.

setup do

%{ breakfast: create breakfast ...}
end

end

No. This will deteriorate with time.
But maybe it takes a long time to make toast. So...

setup...
def make_ toast ...

def spread_cream breakfast do
breakfast = spread the cream breakfast
assert breakfast.taste == good
breakfast

end

def be_so_sexy ...

should...

No. This will deteriorate with time.
But maybe it takes a long time to make toast. So...

def setup

def make_toast ...
def spread_cream ...
def be_so_sexy ...

test "make breakfast”, context do
context.breakfast
|> make_toast
|> spread_cream
|> be_so_sexy
end

Much better. Single purpose...
The tooling can’t help as much as we would like
Want failures reported from make_toast

Integration tests
will be

step "make the toast", breakfast do
breakfast = make the toast breakfast
assert breakfast.taste == :good
breakfast

end

step "spread the cream", breakfast do
end
step "be sexy", breakfast do
end
end

2. Concurrency matters

Functional programming helps.
Database backed tests: Allow data templates which guarantee unique attributes.

3.

Isolate the Database

Blacksmith list as a
Repository

Directions

In ShouldTI

e Push experiments out of setup
blocks, back into tests

e Matchers are macros

Into ExUnit

e Nested Context
eContinue on Fail
e Assertion Customization

e ITntegration Tests into ExUnit

Test
all of your code
wilth
beautiful,
dry,
fast
tests

Test
all of your code
wilth
beautiful,
dry,
fast
tests

Test
all of your code
wilth
beautiful,
dry,
fast
tests

Test
all of your code
wilth
beautiful,
dry,
fast
tests

Test
all of your code
wilth
beautiful,
dry,
fast
tests

should respond with questions

Functional programming helps.
Database backed tests: Allow data templates which guarantee unique attributes.

