
How to Pick a Pool in
Erlang without Drowning

Anthony Molinaro
OpenX, Inc.

A little about me

• I’ve been doing server side web development
professionally since 1996.

• I’ve been doing high volume low latency server
side web development since 1998

• Since 2008, this has been exclusively in Erlang

Assumptions about you

• You know a little Erlang

• You’ve written a gen_server or two

• Curious about pooling of resources (particularly
process identifiers but in general any sort of state).

A few things about Erlang
• Built around Concurrency

• Light weight processes

• Shared nothing message passing

• A common server pattern is an Erlang process per
action (most often a request)

• State can be a bottleneck when it needs to be
shared

What sort of state might you
want to share?

• Configuration

• Processed/cached contents of a large file

• Large data structure

• Persistent connections to another system

What sort of options do you
have for sharing state?

• Recreate every time you need it

• Use ETS/DETS/Mnesia

• Use an external cache/DB (Riak/Redis/MySQL/
Memcache/etc) and make network calls

• Put it in a process

If it's in a process you can...

• Send a message to the process to get the state.

• Send a message to the process to set the state.

• Send some parameters to a process to combine
with state and compute something.

• Keep a connection as the state of a process and
send messages to the process to communicate
over the connection.

Get access to some shared
State

-module (stuff).

start_link () ->
 gen_server:start_link ({local, ?MODULE}, ?MODULE, [], []).

get_state () ->
 gen_server:call (?MODULE, {get_state}).

init ([]) ->
 State = get_state_from_somewhere (),
 {ok, State}.

handle_call ({get_state}, _From, State) ->
 {reply, {ok, State}, State}.

Do some work based on
some State

-module (stuff).

start_link () ->
 gen_server:start_link ({local, ?MODULE}, ?MODULE, [], []).

search (Params) ->
 gen_server:call (?MODULE, {search, Params}).

init ([]) ->
 Tree = get_large_search_tree_from_somewhere (),
 {ok, Tree}.

handle_call ({search, Params}, _From, Tree) ->
 Answer = search_in_tree (Params, Tree),
 {reply, {ok, Answer}, State}.

Send a request across a
shared connection.

-module (stuff).

start_link () ->
 gen_server:start_link ({local, ?MODULE}, ?MODULE, [], []).

get_data (Query) ->
 gen_server:call (?MODULE, {get_data, Query}).

init ([]) ->
 Connection = connect_to_somewhere (),
 {ok, Connection}.

handle_call ({get_data, Query}, _From, Connection) ->
 Answer = query (Query, Connection),
 {reply, Answer, Connection}.

Looks good, but what’s the
drawback?

• Concurrency

• Process mailbox (mostly) serializes requests

• Theoretically unlimited in length

• Only supports basic back pressure through
reduction counts

• Still mostly works, computers are fast, but does not
scale across cores.

Pooling to the Rescue?
• Goto Github and search for

• “process pool” - 12 results

• “resource pool” - 3 results

• “worker pool” - 18 results

• “connection pool” - 19 results

• Additionally, I knew about 7 more libraries not returned

• Out of these 59, only one library listed in multiple results

Whittling it down
• Does the project appear active?

• Recent commits, recent issues

• Is it standalone/general purpose?

• In other words it’s not pool library + db connection

• Is it ready for use

• Releases are tagged

• Can be ingested and built by rebar without forking

Final List to explore further
• poolboy - by far the most popular

• pooler - by far the most OTP

• gen_server_pool - easy to use (and written at
OpenX so I know the most about it)

• dispcount - stochastic dispatch

• gproc - pluggable dispatch models

Considered, but had a few
problems

• leo_pod - interesting because it claims issues with ETS

• sidejob - interesting way to dispatch work based on
scheduler locality

• pq - interesting because it uses a gen_fsm for dispatch

• episcina - looks promising, but failed to compile as a
rebar dependency

• worker_pool - from Inaka, it’s had some blog posts and
been used in production, but doesn’t tag releases

Common Components

• Worker Pool - A supervised/monitored set of
processes

• Dispatching - Some strategy for selecting one of
the workers

Features which can
differentiate

• Ease of use

• Features of Worker Pool

• Variable size (min/max)

• Auto size (grow/shrink)

• Shutdown based on age

• Shutdown based on idle

• Features of Dispatching

• Method (checkin/checkout/random/round robin/etc).

• Queue or Fast Fail

• Performance?

Getting into some Details
• Example Worker

 -module (pt_baseline_worker).

 -export ([start_link/1, do/3]).

 start_link(WorkerArgs) ->
 gen_server:start_link(?MODULE, WorkerArgs, []).

 do (Pid, N, Data) ->
 gen_server:call (Pid, {work, N, Data}).

 handle_call ({work, N, Data}, _From, State) ->
 { reply, {ok, pt_util:work (N, Data)}, State}.

• Use fixed size and fail fast semantics.

Overview - poolboy
• Most popular based on use in many other packages

• Small - 306 lines of code, 672 lines of tests

• Can queue or fast fail (queue can be lifo or fifo)

• Limited support variable sizing and auto-sizing (via
size and overflow)

• Can store any pid (start_link/1 which returns a pid is
the only requirement on a worker)

Using poolboy
init ([_MinPool, MaxPool]) ->
 { ok,
 { {one_for_one, 10, 10},
 [{ ?POOL_ID,
 {poolboy, start_link,
 [[{name, {local, ?POOL_ID}},
 {worker_module, pt_baseline_worker},
 {size, MaxPool}, {max_overflow, 0}],
 WorkerInitArgs]},
 permanent, 5000, worker, [poolboy] }] } }.

do (N, Data) ->
 case poolboy:checkout (?POOL_ID, false) of
 full -> {error, busy};
 Worker ->
 Res = pt_baseline_worker:do (Worker, N, Data),
 poolboy:checkin (?POOL_ID, Worker), Res
 end.

Call Details poolboy
caller poolboy worker

checkout
(gen_server:call)

worker available?

N: full

Y: pid of worker

do work
(gen_server:call/cast/info)

result

checkin
(gen_server:cast)

Overview - pooler
• Complicated OTP supervision tree

• Large - 841 lines of code, 1060 lines of tests

• Unique: supports groups of pools using pg2

• Can queue or fast fail

• Supports variable sizing and auto-sizing based on workers’ age

• culling is a little noisy because of OTP logging

• Can store any pid

Using pooler
init ([_MinPool, MaxPool]) ->
 pooler:new_pool (
 [{name, pt_pooler_pool},
 {max_count, MaxPool},
 {init_count, MaxPool},
 {max_age, {60, min}},
 {start_mfa,
 {pt_baseline_worker, start_link, WorkerInitArgs}}],
 {ok, #state {}}.

do (N, Data) ->
 case pooler:take_member (pt_pooler_pool) of
 error_no_members -> {error, busy};
 P -> Res = pt_baseline_worker:do (P, N, Data),
 pooler:return_member (pt_pooler_pool, P, ok),
 Res
 end.

Call Details pooler
caller pooler worker

take_member
(gen_server:call)

members available?

N: error_no_members

Y: pid of worker

do work
(gen_server:call/cast/info)

result

return_member
(gen_server:cast)

Overview - gen_server_pool
• Unique: masquerades as worker, so extremely easy to

integrate

• Medium - 470 lines of code, 0 lines of test code

• Can queue or fast fail (or both since queue size can be
limited)

• Supports variable sizing and auto-sizing based on age
or idle

• gen_server pids only

Using gen_server_pool
start_link (_MinPool, MaxPool) ->
 PoolOptions =
 [{ min_pool_size, MaxPool },
 { max_pool_size, MaxPool },
 { idle_timeout, 60 }, % seconds
 { max_worker_age, 60 }, % seconds
 { max_queue, 0 },
 { mondemand, false }],

 gen_server_pool:start_link (
 {local, ?POOL_ID}, pt_baseline_worker,
 WorkerInitArgs, [], PoolOptions).

do (N, Data) ->
 case pt_baseline_worker:do (?POOL_ID, N, Data) of
 {error, request_dropped} -> {error, busy};
 R -> R
 end.

Call - gen_server_pool
caller gen_server_pool gen_server_pool_proxy worker

gen_server:call/cast/info
to pool

available proxy?

N: request_dropped

Y: checkout proxy

call proxy
(erlang:send)

handle_call/cast/info
of worker

normal gen_server
responses

checkin proxy
(gen_server:cast)

result

result

Overview - dispcount
• Unique stochastic based selection using ETS table or

named processes

• Small - 297 lines of code, 361 lines of tests

• Fast fail only (you can yield and retry if you want)

• Fixed number of Resources

• Can store any sort of resource

• Storing of pid actually results in extra process hops

Using dispcount
init ([_MinPool, MaxPool]) ->
 ok = dispcount:start_dispatch (
 ?POOL_ID, {pt_dispcount_dispatch, WorkerInitArgs},
 [{restart, permanent}, {shutdown, 4000},
 {maxr, 10}, {maxt, 60}, {resources, MaxPool}]
),
 {ok, Info} = dispcount:dispatcher_info (?POOL_ID),
 mochiglobal:put (?MOCHIGLOBAL_ID, Info),
 { ok, #state { info = Info } }.

do (N, Data) ->
 PoolInfo = mochiglobal:get (?MOCHIGLOBAL_ID),
 case dispcount:checkout (PoolInfo) of
 {error, busy} -> {error, busy};
 {ok, CheckinReference, Pid} ->
 Res = pt_baseline_worker:do (Pid, N, Data),
 dispcount:checkin(PoolInfo, CheckinReference, Pid),
 Res
 end.

Using dispcount (cont.)
-behaviour (dispcount).
-record (state, {pid, given=false, args}).
init(WorkerInitArgs) ->
 {ok, P} = pt_baseline_worker:start_link (WorkerInitArgs),
 {ok, #state {pid = P, args = WorkerInitArgs}}.
checkout(_From, State = #state {given=true}) ->
 {error, busy, State};
checkout(_From, State = #state {pid=Pid}) ->
 {ok, Pid, State#state {given=true}}.
checkin(Pid, State = #state {pid=Pid, given=true}) ->
 {ok, State#state {given=false}};
checkin(_Pid, State) ->
 {ignore, State}.
dead(State = #state {args = WorkerInitArgs}) ->
 {ok, P} = pt_baseline_worker:start_link (WorkerInitArgs),
 %% lost resource so start a new one
 {ok, State#state {pid=P, given=false}}.

Call - dispcount
caller dispcount dispcount_watcher dispatcher_module worker

checkout

got lock?

N: busy

Y: get dispatcher

checkout dispatcher
(gen_server:call)

checkout

worker pid

use worker
gen_server:call/cast/info

result

checkin

checkin dispatcher
(gen_server:cast)

checkin

give up lock

Overview - gproc
• Really talking about gproc_pool

• Offers just the dispatching method (but offers several)

• gproc must be used for managing processes

• gproc_pool small - 558 lines of code, 98 lines of tests (but gproc is XL - 4090 lines
of code 1788 lines of tests).

• Active queuing (via loop over erlang:yield/0) or fail fast

• Does not support sizing

• Stores pids only

• Dispatch is purely ETS based

• Requires modifications to your worker process

Using gproc
init ([_MinPool, MaxPool]) ->
 ok = gproc_pool:new (?POOL_ID, claim, []),
 { ok, { {one_for_one, 10, 10},
 [begin
 WorkerName = {?POOL_ID, N},
 gproc_pool:add_worker (?POOL_ID, WorkerName),
 { WorkerName,
 {pt_gproc_worker, start_link, [?POOL_ID, WorkerName]},
 transient, 2000, worker, [pt_gproc_worker] }
 end
 || N <- lists:seq (1, MaxPool)] } }.

do (N, Data) ->
 case gproc_pool:claim (?POOL_ID,
 fun (_,Pid) -> pt_gproc_worker:do (Pid, N, Data) end) of
 false -> {error, busy};
 {true, Res} -> Res
 end.

Using gproc (cont.)

% gen_server init function
init ([PoolName, Name]) ->
 % ensure terminate is called
 process_flag(trap_exit, true),
 gproc_pool:connect_worker (PoolName, Name),
 {ok, #state {supervisor = PoolName, name = Name}}.

Call - gproc
caller gproc_pool worker

claim

get gproc (ets)
lock?

N : false

Y : get worker pid
from gproc (ets)

do work
(gen_server:call/cast/info)

result

clear lock
in gproc (ets)

result

Comparative Peformance
• Using most common settings

• fixed size pool (20 processes)

• fail fast config

• Spawn a number of callers, each call

• gets a worker, does work (sleep of 5 ms), sleeps for a
small random amount of time (1-5 ms), repeats for some
number of iterations

• Measure good vs. busy responses, and min/avg/max time

Good Results

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 5 10 15 20 25 30 35 40 45 50

pool size

poolboy
pooler

gen_server_pool
dispcount

gproc

Busy Results

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 5 10 15 20 25 30 35 40 45 50

pool size

poolboy
pooler

gen_server_pool
dispcount

gproc

Min Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 5 10 15 20 25 30 35 40 45 50

pool size
poolboy

pooler
gen_server_pool

dispcount
gproc

Average Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 5 10 15 20 25 30 35 40 45 50

pool size
poolboy

pooler
gen_server_pool

dispcount
gproc

Max Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 5 10 15 20 25 30 35 40 45 50

pool size
poolboy

pooler
gen_server_pool

dispcount
gproc

Context Switches

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 5 10 15 20 25 30 35 40 45 50

pool size

poolboy
pooler

gen_server_pool
dispcount

gproc

Reductions

 3x107

 3.5x107

 4x107

 4.5x107

 5x107

 5.5x107

 6x107

 5 10 15 20 25 30 35 40 45 50

pool size

poolboy
pooler

gen_server_pool
dispcount

gproc

Max Message Queue Size

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5 10 15 20 25 30 35 40 45 50

pool size
poolboy

pooler
gen_server_pool

dispcount
gproc

General recommendations
• poolboy is popular and widely used, it’s easy enough to integrate with, and

you’ll likely find lots of help with issues, but beware it may have issues with load

• pooler is a close second, but it’s completeness with regards to OTP might
make it harder to work with, but beware it may have issues with load

• gen_server_pool is super easy to integrate with, production hardened, but not
widely used and may have issues with load

• dispcount is good for the reasons stated on its github page, in short if you you
know you’ll be overdriving a limited set of resources and fail fast is the behavior
you want it’ll be the fastest at doing that

• gproc seems like it should deal the best with load, but requires you to write
your own process management as well as requires changes to an existing
worker

When not to pool
• A single gen_server never becomes a bottleneck, it’s

so fast you never notice it backing up.

• Large fixed data structures can be compiled into
modules and shared with little cost by many processes
(you may even be able to hot load updates).

• Passing around ports is often faster and easier than
wrapping a process around them and pooling them, so
if you already have a way to reuse acceptors on your
front end you might be able to reuse a port on the
backend.

Links & QA
• Example Code + Notes

• https://github.com/djnym/erlang-pool-research

• Contact info

• anthony.molinaro@openx.com

• Thanks to OpenX for giving me the time to research
this talk. If you want to talk about opportunities to
work in Erlang everyday come talk to me.

https://github.com/djnym/erlang-pool-research
mailto:anthony.molinaro@openx.com

