

From WhatsApp
to

Outer Space

Joe, Robert and Mike

Where are we today?
Many enterprises use Erlang for a signification part of their
infrastructure. This gives them a commercial advantage in terms
of time-to-market, slimmer code base, fewer programmers.

WhatsApp (Facebook)
Machine Zone
Ericsson
Tail-f (Cisco)
Klarna
Basho
Bet365
Whisper
T-Mobile
AddRoll

Sqor
Process one
Erlang Solutions
Vocalink
RabbitMQ
Opscode (Chef11)
Infoblox
And a lot of others!!

And there are some BIG
names we can't mention

What do they do?

● Messaging
● Control mobile telecom
● Network management
● Banking backends
● Data base management
● Online gaming
● Online advert brokering
● And a lot of other things some we don't even know about

What do they have in common?

● They are all server applications

● Several are multi-processor

● All serve huge numbers of concurrent
transactions

● “Zero” downtime and fault tolerance are
important

It's not surprising,
 that's what we

 developed
Erlang for!

Most “serious” Applications Need
Several Software Technologies!

● Erlang fits the bill for highly concurrent, distributed
fault tolerant applications

● Erlang doesn't work so well for DSP or other
computationally critical applications but is good for
coordination of products using DSPs, FPGAs

● You can use Erlang for graphics, but it is maybe easier
to use something else?

● Maybe we should work to expand the areas where
Erlang wins?

Teaching Erlang
Training

How to get people to understand
Erlang

The Short Answer

It's easy!

Honestly it is!

The Long Answer

The Major Problems

The Lesser Problems

The Major Problems

● Erlang is functional
● The concurrency model
● Developing an Application Architecture

 Each a major rethink!

Erlang is Functional

● Immutable data
● Pattern Matching
● Recursion
● ...

Concurrency Model

● Asynchronous Communication
● Selective receiving of messages
● No shared state
● ...

The Application Architecture

● How to build a system architecture

The Lesser Problems

● Syntax
● ...

Syntax

Yes, most people think the syntax strange

BUT

Syntax

Most functional languages have a strange
syntax

All languages you don't know have a strange
syntax

Syntax

By the time most people have grasped the
basic concepts they know how to express

them

Projects using Erlang

● It is easy to build prototypes with Erlang!

● Try things out “in the small” before you start
development with a large team!

● Re-write code and develop architectures until you are
happy with them

● Keep development of automated test suites running at
the same pace as development of the application
software

● Make sure that tools like Dialyzer are used for the start.

Starting up and maintaining

● There is a huge difference between:

– Starting a project for a new application

– Maintaining an existing product

● You need different

– people

– goals

– Schedules and project management

Erlang

Where are we now?
Where are we going?

Where is the software industry
going?

Erlang's initial design reflects the
hardware of the mid 1980's

● Small memory (a few MB RAM – single CPUs)
● Small number of nodes (10's of nodes)
● Closed (Behind a firewall – poor security)

1985: How do we map a large number of parallel activities onto
a small number of CPUs?

2015: How do we map a large number of parallel activities onto
a massive number of CPUs?

Changes in SW follow
changes in HW

Time

Line of
Code to
Support
New HW

Hardware
changes

SW changes
rapidly

SW changes
slowly

● If the hardware changes the SW will change

● Big changes to hardware = Big changes to SW

● SW takes a long time to catch up (long tail to
the S curve)

● “Good enough” catch-up is rapid

● Commercial advantage is in the middle of the S
curve

● 1933 - Alonzo Church – Lambda Calculus

● 2014 – Java 8 – gets Lambdas

(only took 91 years)

● 1879 – Gottlob Frege - Begriffsschrift

● 1986 – Erlang :-)

Changes in theory take even longer ...

What are the big
changes to hardware/theory that

will drive
SW in the future?

Hardware

● Massive NOC/SOC chips

1000 General purpose CPUs 100 hardware
accelerators – 1 MB/CPU

● Peta – Exabytes of local storage

Non Volatile memory?
● High speed communication

● Massive numbers of connected devices
● Memory is free, CPU is Free, Communication Costs

Data rates drive the industry
● 2G – GSM 10Kb/s → 64 Kb/s
● 3G – WCDMA 64Kb/s, 384Kb/s, 2Mb/s

 HSPA up to 15Mb/s
● 4G – LTE 100 Mb/s. LTE-A up to 1 GB/s (nomadic)
● 5G – 10Gb/s “hot spots” 100Mb/s “everywhere”

● 1000 x increase per ten years (10^6 price/bit decrease over 20
years)

● 2014 – wireless access exceeds wireline (which is why WhatsApp
was worth so much)

Mobile data is the bottleneck – this is where the
shoe pinches – get to the fibre and the rest is
easy

The New Problems

● 50 Billion connected devices

● 1000+ core computers

● Limited Energy (how much energy does it take
to store 1GBye of data in the cloud? - what is
the energy cost of a big data analysis – what
does a Google search cost – in Joules)

● Limited radio bandwidth – data rates are high
BUT total capacity is limited by laws of physics

The New Hardware Landscape

● 50 Billion connected devices

● 5G (I have to say this :-)

● 1000+ core CPUs

● 5 Gb/s radio access

● CPU power is free

● Memory is free

● Communication costs

● Energy costs

The New software problems

● Manage 50 Billion crypto keys

● Manage the SW versioning on 50 Billion
devices and the network

● Program 1000+ core CPUs with HW
accelerators

● Fix the “old mess” - be backwards compatible

● Save energy (zero environmental impact)

● Increased system complexity

The Future
● Self managing

Version control/security/authentication/privacy become

key problems

● Self repairing

What comes after supervision trees? Machine learning??
AI??? neural nets????, Chaos Monkeys?????

● Energy Aware

Measure Measure Measure -

● Privacy

Where is Erlang today?

● Language of choice for programming “soft” RT
distributed applications.

● Language of choice for multicore (excluding GP/DSP
type SW)

● 20 years battle tested experience with highly concurrent
fault tolerant systems with self-repair

● Great for rapid prototyping distributed programs

● Can manage “a few” million devices from one Erlang
machine – need DHTs etc to scale to billions

“The best way to predict the
 future is to invent it”

— Alan Kay

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

