
Graphical models for
QuickCheck

Thomas Arts, Kirill Bogdanov, Alex Gerdes, John Hughes

This project has received funding from the
EU FP7 Collaborative project PROWESS, grant number 317820,

http://www.prowessproject.eu

http://www.prowessproject.eu

Testing with QuickCheck
• QuickCheck permits one to write generators  

for test data and pre/postconditions.

• The expectation is that user provides a model,  
based on which test data is randomly generated.

• Illustration of testing a write operation:

write_args(_) -> [key(), int()]. 
 
write(Key, Value) -> lock:write(Key, Value).  
 
write_post(_,[Key,Value],Res) -> eq(Res,ok).

Global state

write_pre(S) -> S#state.started

write_args(S) -> [key(), int()].

operation
name

this is a
precondition

type of the
global state

element of the
global state

Global state is a record-type of type state with element
started, passed as an argument to all operations.

list of arguments to pass to operation
write of the system under test

returns a generator
for keys

returns a generator
for integers

precondition

generator for
arguments

Testing write using global state
Assuming started is a boolean component of the
global state reflecting if the system was started,

write_args(S) -> [key(), int()]. 

write(Key, Value) -> lock:write(Key, Value).  

write_pre(S) -> S#state.started 

write_post(S,[Key,Value],Res) -> eq(Res,ok).

write_next(S, Res, [Key, Value]) ->  
 S#state{kvs = [{Key,Value} | 
 proplists:delete(Key,S#state.kvs)]}.

Locker example

• Can be started/stopped

• Can be locked/unlocked

• Does not include read/write

Part of this diagram in pure QuickCheck
lock_pre(S) -> S#state.started andalso not S#state.locked.
lock_args(S) -> [].
lock_next(S,Res,[])-> S#state{locked=true}.
!
unlock_pre(S) -> S#state.started andalso S#state.locked.
unlock_args(S) -> [].
unlock_next(S,Res,[])-> S#state{locked=false}.

Very easy to make a mistake in one of
the above expressions

Now if we are doing something more complex

A lot of effort will go into ‘state maintenance’

What we did
• Developed a tool to edit graphical models.

• Names of operations are extracted from Erlang code.

• For the above example, the resulting model is half the
size of the traditional model …  
 
 … and much easier to maintain.

• Test failures and frequencies are automatically
extracted from results of test execution.

lock_eqc

Addition of a read transition around unlocked.

Frequencies

Running tests produces a distribution of transitions

Weights can be updated

Changing weights makes operations of interest run
more frequently.

If you would like to try it
• You have access to both QuickCheck tool and the

graphical editor online at http://quviq.de/euc2015

• The .zip file contains both eqc_graphedit (the graphical
editing tool) and time-limited version of QuickCheck that
you need to install first.

• lock.erl is the module we are testing

• lock_eqc.erl is the QuickCheck model for testing lock.erl

• I’ll do the demo how to use the editor.

http://quviq.de/euc2015

How to model the graphical editor using itself

we need to start with a state
machine, hence generate

one at random

the first thing to
do is click ‘edit’

Selecting states

nothing is
selected

something
is selected

can click on any
state to select it

Example: adding the ‘lock’ state

Adding states

the tool waits for us to
pick where to add

and we can enter
details of the state

cancel adding a state

decide no to
add a state

Demo running
tests

Editing states

• State has to
be selected.

• Edit has to be
clicked.

• If ‘initial?’ is
ticked it
cannot be
cleared.

Editing states
similar dialog

to add

contains generators for both
successful edits and invalid ones

Commands on the right-hand side

• Used to add transitions: choose a
command, then drag a transition.

• Can be clicked at any time.

• Consequently, the corresponding
transitions have to be added to
each state.

Conclusions

• Existing QuickCheck models are hard to develop for
complex state-transition diagrams.

• Developed interface to edit such diagrams.

• Part of the most recent version of QuickCheck.

• Tested using itself.

