
LING on Raspberry Pi
Erlang for embedded platforms



50 cent about LING
• “Yet another Erlang VM” 

• written from scratch 

• compact, fast, compatible (R17) 

• no SMP code, simple schedulers 

• low-latency GC 

• needs no disk access 

• http://erlangonxen.org

http://erlangonxen.org


LING adds ports

LING 
Xen-x86

LING 
Xen-ARM

LING 
ARM

LING 
ARM64

LING 
POSIX

LING 
MIPS

LING 
MIPS64

ling.io soon



LING on ARM

• No hypervisor, truly bare metal platform 

• Start with 32-bit ARM (Raspberry Pi) 

• ARM64 servers later 

• Target mobile and IoT applications 

• A software platform for robotics?



Demo



Challenges of the port

• “Hello, world” is the hardest part for a bare metal 
development 

• Raspberry Pi serial interface requires a “level 
converter” 

• Difficult to determine the Raspberry Pi flavour - 
currently only works on RPi v1b



Embedded dev today
• There are always devices too small for Linux 

• A lot (most of) code is copy-pasted without 
understanding 

• Libraries are often incompatible 

• You can use any language as long it is C 

• REPL? What REPL? 

• Embedded debugging is a dark craft



Brave new embedded world

• Use a high-level language (Erlang) for applications and drivers 

• Dynamic languages are fast enough - justifies the use of 
bytecode VMs 

• Erlang seems to be an ideal candidate because of: 

• Self-healing supervisors 

• Concurrency 

• Bit pattern matching 

• Hot code loading and more…



And we need to go 
deeper…™

• Drivers are the real pain in the neck 

• 150k SLOC for a NIC’s driver, Carl! 

• Linux’s there mostly because of drivers 

• There should be better solution 

• Why to not implement driver in Erlang?



New approach to drivers
• A lower part and a higher part a driver 

• The lower part of a driver to be generated from 
Verilog/VHDL 

• The higher part is implemented in Erlang as 
reaction to messages from the lower part 

• No code yet 

• The concept of forthcoming project codenamed L



Meet the L
• Erlang with strong types 

• No type annotations - type inference only 

• Compiles to binary code, no VM 

• A minimal runtime (<8k) 

• A compiler produces unikernels 

• 2 months from Fibonacci to Black-Scholes



Join us!


