
1

2

Lessons learnt re-writing a PubSub system
Chandru Mullaparthi - Principal Software Architect at bet365

About

3

• Founded in 2000
• Located in Stoke-on-Trent
• The largest online sports betting company
• Over 19 million customers
• One of the largest private companies in the UK
• Employs more than 2,000 people
• 2013-2014: Over £26 billion was staked

– Last year is likely to be around 25% up
• Business growing very rapidly!

• Very technology focused company

History of Erlang use

• Started experimenting with Erlang/OTP
circa 2011

• 3 major systems written in Erlang

• 4th one in progress

• Code base of varied quality

4

Publisher

5

Data
sources

Data Pump Publisher

Why rewrite?

6

Complicated process structure

socket handling
process

decode stage 1 decode stage 2 decode stage 3

decode stage 4 decode stage 5 decode stage 6

Pool of processes

Pool of processes

Pool of processes

Message queue hotspots

Data Pump

New architecture

7

• Exploits tree structure of data shipped to
clients

• Total number of nodes in the tree
~2.2million

• Approx 130K top level nodes just below
root

1st attempt

• One process to take a message off the
socket

• Decode

• Update global-state ETS table

• Send message to one of 130K top level procs

8

New architecture

9

socket handling
process

+
decoding process

Data Pump

ETS

update
handling
process

update
handling
process

Approx. 130K procs update
handling
process

client socket
handler

client socket
handler

client socket
handler

1 process per TCP
connection

Global tree node
data store

Result:
message queue build up at source

2nd attempt
• One process to take a message off the

socket
• Decoding 1st stage
• Insert into ETS table
• Another process pops message off ETS

table
• Update ETS table
• Send message to one of 130K top level

procs
10

New architecture

11

socket handling
process ETS

decoding
process

Data Pump

ETS

update
handling
process

update
handling
process

Approx. 130K procs update
handling
process

client socket
handler

client socket
handler

client socket
handler

1 process per TCP
connection

Global tree node
data store

Results

12

It worked well with 1.8 million nodes in the tree

BUT

throughput fell and latency increased for 2.2m
nodes in the tree

Garbage collection

• GC is per process

• Regular GC of a process is “generational”.
Data that survives at least one GC will be
put on the old heap

• When there is no space on the old heap, a
“fullsweep” is performed

13

GC continued

• The time taken to GC eats into the 2000
reductions available for a process

• So a “busy process” (with lots of incoming
messages) with lots of garbage produced
will quickly spiral out of control

14

Reduction count penalty

• Sending message to a process with a “large” message
queue

• Long GC
• Proportional to size of message sent to another node
• Proportional to size of binaries created
• …

15

Nice to have
Better documentation about reduction count

consumption and “penalties”

Process priority flag
• process_flag(priority, high) does NOT

mean more reductions are available

• It just means it gets scheduled before
others, if it has messages in its queue

16

Nice to have
Support for processes which have a dedicated

execution thread may be useful?

Diagnosis

17

[root@publisher ~]#
for x in $(seq 10000); \
 do ps -eo ppid,pid,user,stat,pcpu,comm,wchan:32 | \
 grep D | \
 egrep -v "\-|WCHAN"; \
 done;

2 263 root DN 0.0 khugepaged call_rwsem_down_write_failed
2 263 root DN 0.0 khugepaged call_rwsem_down_write_failed
2 263 root DN 0.0 khugepaged call_rwsem_down_write_failed
2 263 root DN 0.0 khugepaged call_rwsem_down_write_failed
2 263 root DN 0.0 khugepaged call_rwsem_down_write_failed
2 263 root DN 0.0 khugepaged call_rwsem_down_write_failed

-e : Select all processes
-o : user defined format

ppid : parent process id
pid : process id
stat : process state
pcpu : CPU utilisation
comm : command name
wchan : kernel function name
where process is sleeping

THP

• Transparent Huge Pages are a feature in 64-
bit RHEL

• Enabled by default for all applications

• Abstraction over “huge page” support in Linux

• Most database vendors recommend turning
this off

18

What are huge pages?

• Typical size of page in memory is 4KB

• 20GB of memory equates to 5,242,880
pages and that many entries in the page
table.

• RHEL kernel allows page sizes of 2MB and
1GB on x86_64

19

How does THP work?

• Using the huge page feature requires explicit
code change to the application (in this case
‘beam’)

• THP aims to make it “just happen”

• It also does some memory defragmentation
which seems to be the root cause of the
issue

20

Disabling THP

21

 echo never > /sys/kernel/mm/redhat_transparent_hugepage/enabled 
 echo never > /sys/kernel/mm/redhat_transparent_hugepage/defrag 
 echo no > /sys/kernel/mm/redhat_transparent_hugepage/khugepaged/defrag
 

Permanently disable THP

22

#!/bin/sh

if [[$EUID -ne 0]]; then
 echo "This script must be run as root" 1>&2
 exit 1
fi

for KERNEL in /boot/vmlinuz-*; do
 grubby --update-kernel="$KERNEL" --args='transparent_hugepage=never'
done

source: http://unix.stackexchange.com/questions/99154/disable-transparent-hugepages

Message passing

• Double edged sword
– Easy to write reasonably complex code,

quickly
– Enough rope to hang yourself easily

• Developed a process message queue with
{active, once} semantics

• No improvement in performance, but no
noticeable degradation either!

23

Message queue

24

Results

25

M
ill

is
ec

on
ds

 (l
og

 s
ca

le
)

100K clients
1x production load

Results

26

M
ill

is
ec

on
ds

100K clients
1x production load

Results

27

M
ill

is
ec

on
ds

 (l
og

 s
ca

le
)

100K clients
4x production load

Bottlenecks

28

socket handling
process ETS

decoding
process

Data Pump

ETS

update
handling
process

update
handling
process

update
handling
process

client socket
handler

client socket
handler

client socket
handler

1 process per TCP
connection

Global tree node
data store

Queues build up
here at very high

load

Some of these
processes become

“hot”

Work in progress

29

Distributed Data Grid

30

• An mnesia like database

• Without the storage backend issues

• And without the “partitioned network”
problems with mnesia

• Something similar to Infinispan

Bounded message q

• Long term itch

• Seems fairly straightforward to achieve
➡ Additional option max_msg_q_length in

process_flag/2 BIF
➡ Modify process_info/2 BIF
➡ Kill process if message queue length

exceeds configured limit

31

Deep packet inspection

• Analyse traffic patterns in real-time

• Proof of concept being worked on using
Erlang

• Speed will be an issue here so an
interesting challenge

32

COME WORK WITH US!

33

34

