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Lessons learnt re-writing a PubSub system
Chandru Mullaparthi - Principal Software Architect at bet365



About
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• Founded in 2000 
• Located in Stoke-on-Trent 
• The largest online sports betting company 
• Over 19 million customers 
• One of the largest private companies in the UK 
• Employs more than 2,000 people 
• 2013-2014: Over £26 billion was staked 

– Last year is likely to be around 25% up 
• Business growing very rapidly! 

• Very technology focused company 



History of Erlang use

• Started experimenting with Erlang/OTP 
circa 2011 

• 3 major systems written in Erlang 

• 4th one in progress 

• Code base of varied quality
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Publisher
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Data  
sources

Data Pump Publisher



Why rewrite?
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Complicated process structure

socket handling 
process

decode stage 1 decode stage 2 decode stage 3

decode stage 4 decode stage 5 decode stage 6

Pool of processes

Pool of processes

Pool of processes

Message queue hotspots

Data Pump



New architecture
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• Exploits tree structure of data shipped to 
clients 

• Total number of nodes in the tree 
~2.2million 

• Approx 130K top level nodes just below 
root



1st attempt

• One process to take a message off the 
socket 

• Decode 

• Update global-state ETS table 

• Send message to one of 130K top level procs

8



New architecture
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socket handling 
process   

+  
decoding process

Data Pump

ETS

update 
handling 
process

update 
handling 
process

Approx. 130K procs update 
handling 
process

client  socket 
handler

client  socket 
handler

client  socket 
handler

1 process per TCP 
connection

Global tree node 
data store

Result: 
message queue build up at source



2nd attempt
• One process to take a message off the 

socket 
• Decoding 1st stage 
• Insert into ETS table 
• Another process pops message off ETS 

table 
• Update ETS table 
• Send message to one of 130K top level 

procs
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New architecture
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Results
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It worked well with 1.8 million nodes in the tree 
  

BUT 

throughput fell and latency increased for 2.2m 
nodes in the tree



Garbage collection

• GC is per process 

• Regular GC of a process is “generational”. 
Data that survives at least one GC will be 
put on the old heap 

• When there is no space on the old heap, a 
“fullsweep” is performed
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GC continued

• The time taken to GC eats into the 2000 
reductions available for a process 

• So a “busy process” (with lots of incoming 
messages) with lots of garbage produced 
will quickly spiral out of control
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Reduction count penalty

• Sending message to a process with a “large” message 
queue 

• Long GC 
• Proportional to size of message sent to another node 
• Proportional to size of binaries created 
• …
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Nice to have 
Better documentation about reduction count 

consumption and “penalties”



Process priority flag
• process_flag(priority, high) does NOT 

mean more reductions are available 

• It just means it gets scheduled before 
others, if it has messages in its queue
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Nice to have 
Support for processes which have a dedicated 

execution thread may be useful?



Diagnosis

17

[root@publisher ~]#  
for x in $(seq 10000); \ 
   do ps -eo ppid,pid,user,stat,pcpu,comm,wchan:32 | \ 
       grep D | \ 
       egrep -v "\-|WCHAN"; \ 
   done; 

2   263 root     DN    0.0 khugepaged      call_rwsem_down_write_failed 
2   263 root     DN    0.0 khugepaged      call_rwsem_down_write_failed 
2   263 root     DN    0.0 khugepaged      call_rwsem_down_write_failed 
2   263 root     DN    0.0 khugepaged      call_rwsem_down_write_failed 
2   263 root     DN    0.0 khugepaged      call_rwsem_down_write_failed 
2   263 root     DN    0.0 khugepaged      call_rwsem_down_write_failed 

-e : Select all processes 
-o : user defined format 

ppid : parent process id 
pid : process id 
stat : process state 
pcpu : CPU utilisation 
comm : command name 
wchan : kernel function name 
where process is sleeping



THP

• Transparent Huge Pages are a feature in 64-
bit RHEL 

• Enabled by default for all applications 

• Abstraction over “huge page” support in Linux 

• Most database vendors recommend turning 
this off
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What are huge pages?

• Typical size of page in memory is 4KB 

• 20GB of memory equates to 5,242,880 
pages and that many entries in the page 
table. 

• RHEL kernel allows page sizes of 2MB and 
1GB on x86_64
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How does THP work?

• Using the huge page feature requires explicit 
code change to the application (in this case 
‘beam’) 

• THP aims to make it “just happen” 

• It also does some memory defragmentation 
which seems to be the root cause of the 
issue
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Disabling THP
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 echo never > /sys/kernel/mm/redhat_transparent_hugepage/enabled 
 echo never > /sys/kernel/mm/redhat_transparent_hugepage/defrag 
 echo no > /sys/kernel/mm/redhat_transparent_hugepage/khugepaged/defrag 
 



Permanently disable THP
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#!/bin/sh 

if [[ $EUID -ne 0 ]]; then 
   echo "This script must be run as root" 1>&2 
   exit 1 
fi 

for KERNEL in /boot/vmlinuz-*; do 
    grubby --update-kernel="$KERNEL" --args='transparent_hugepage=never' 
done

source: http://unix.stackexchange.com/questions/99154/disable-transparent-hugepages



Message passing

• Double edged sword 
– Easy to write reasonably complex code, 

quickly 
– Enough rope to hang yourself easily 

• Developed a process message queue with 
{active, once} semantics 

• No improvement in performance, but no 
noticeable degradation either!
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Message queue
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Results
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Results
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Bottlenecks
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socket handling 
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decoding 
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Data Pump

ETS
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client  socket 
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1 process per TCP 
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Queues build up 
here at very high 

load

Some of these 
processes become  

“hot”



Work in progress
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Distributed Data Grid
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• An mnesia like database 

• Without the storage backend issues 

• And without the “partitioned network” 
problems with mnesia 

• Something similar to Infinispan



Bounded message q

• Long term itch 

• Seems fairly straightforward to achieve 
➡ Additional option max_msg_q_length in 

process_flag/2 BIF 
➡ Modify process_info/2 BIF 
➡ Kill process if message queue length 

exceeds configured limit
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Deep packet inspection

• Analyse traffic patterns in real-time 

• Proof of concept being worked on using 
Erlang 

• Speed will be an issue here so an 
interesting challenge
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COME WORK WITH US!

33



34


