bet365




Lessons learnt re-writing a PubSub system

Chandru Mullaparthi - Principal Software Architect at bet365




Founded in 2000

Located in Stoke-on-Trent

The largest online sports betting company
Over 19 million customers

One of the largest private companies in the UK
Employs more than 2,000 people

2013-2014: Over £26 billion was staked

— Last year is likely to be around 25% up
* Business growing very rapidly!

Very technology focused company




« Started experimenting with Erlang/OTP
circa 2011

* 3 major systems written in Erlang
« 4th one in progress

« Code base of varied quality




— Publisher
— Data Pump [

—
Js

N~

Data
sources




Complicated process structure Message queue hotspots

socket handling
process
decode stage 4

decode stage 1 decode stage 2 decode stage 3

decode stage 5 decode stage 6
Pool of processes

Pool of processes 4
v \

Pool of processes




» Exploits tree structure of data shipped to
clients

e Total number of nodes in the tree
~2.2million

* Approx 130K top level nodes just below
root




* One process to take a message off the
socket

* Decode
* Update global-state ETS table

* Send message to one of 130K top level procs




Result:
message queue build up at source data store

socket handling \
process

v

Approx. 130K procs

client socket

client socket

Global tree node

>l ETS

+
decoding process

update
handling
process

client socket
handler

1 process per TCP
connection




* One process to take a message off the
socket

* Decoding 15t stage
 Insertinto ETS table

* Another process pops message off ETS
table

 Update ETS table

* Send message to one of 130K top level
procs




Global tree node
data store

socket handling
process

decoding R

update update update
handling handling Approx. 130K Procs handling
process process process

client socket
handler

client socket client socket 1 pI’OCGSS per TCP
handler handler .
connection

11



/ It worked well with 1.8 million nodes in the tree \

BUT

throughput fell and latency increased for 2.2m
\_ nodes in the tree

/

12



* GC is per process

* Regular GC of a process is “generational”.
Data that survives at least one GC will be
put on the old heap

* When there is no space on the old heap, a
“fullsweep” is performed




* The time taken to GC eats into the 2000
reductions available for a process

* S0 a "busy process” (with lots of incoming
messages) with lots of garbage produced
will quickly spiral out of control




Sending message to a process with a “large” message
queue

Long GC
Proportional to size of message sent to another node
Proportional to size of binaries created

-

Nice to have
Better documentation about reduction count
consumption and “penalties”

15



« process_flag(priority, high) does NOT
mean more reductions are available

* |t just means it gets scheduled before
others, if it has messages in its queue

a )
Nice to have

Support for processes which have a dedicated

execution thread may be useful?
NS /

16



[root@publisher ~#

for x in $(seq 10000); \
do ps -eo ppid,pid,user,stat,pcpu,comm,wchan:32 | \ | stat: process state

grep D |\

egrep -v "\-|WCHAN"; \

done;

263 root
263 root
263 root
263 root
263 root
263 root

NDNDNDNDNDDN

DN
DN
DN
DN
DN
DN

0.0 khugepaged
0.0 khugepaged
0.0 khugepaged
0.0 khugepaged
0.0 khugepaged
0.0 khugepaged

-e : Select all processes
-0 : user defined format

ppid : parent process id
pid : process id

pcpu : CPU utilisation

comm : command name
wchan : kernel function name
where process is sleeping

call rwsem_down wrre_tanea

call_ rwsem_down_write failed
call_ rwsem_down_write failed
call_ rwsem_down_write failed
call_rwsem_down_write_failed
call_rwsem_down_write_failed

17



* Transparent Huge Pages are a feature in 64-
bit RHEL

* Enabled by default for all applications
» Abstraction over “*huge page” support in Linux

* Most database vendors recommend turning
this off




 Typical size of page in memory is 4KB

« 20GB of memory equates to 5,242,880

pages and that many entries in the page
table.

 RHEL kernel allows page sizes of 2ZMB and
1GB on x86 64




» Using the huge page feature requires explicit
code change to the application (in this case
‘beam’)

 THP aims to make it “just happen”

* |t also does some memory defragmentation
which seems to be the root cause of the

Issue




echo never > /sys/kernel/mm/redhat_transparent_hugepage/enabled
echo never > /sys/kernel/mm/redhat_transparent_hugepage/defrag
echo no > /sys/kernel/mm/redhat_transparent_hugepage/khugepaged/defrag

21



#!/bin/sh

if [ $EUID -ne 0 ]]; then
echo "This script must be run as root" 1>&2
exit 1

fi

for KERNEL in /boot/vmlinuz-*; do

grubby --update-kernel="$KERNEL" --args="transparent_hugepage=never'
done

source: http://unix.stackexchange.com/questions/99154/disable-transparent-hugepages

22



* Double edged sword

— Easy to write reasonably complex code,
quickly
— Enough rope to hang yourself easily

* Developed a process message queue with
{active, once} semantics

* No improvement in performance, but no
noticeable degradation either!




| Sender Process l | Mailbox Process I

spawn

| Worker Process I

e o

|
Lookup mailbox pid fér sender

¢ Store mailbox pid

| |
' erlang message >:

erlang message

|
>

I

active_once()

| Accumulate message in state queue |

" Accumulate message in state queue

Accumulate message in state queue

-

erlang message

|
|
|
|
|
|
|
|
|
|
|
|
|
1 erlang message
L)
|
|
|
|
|
|
|
|
|
|
|

| Sender Process I | Mailbox Process I

>
| Worker Process l

oYY

24



Milliseconds (log scale)

latency

100K clients
1x production load

¢ latency

25



Milliseconds

7000

6000 -

5000 -

4000 -

3000 -

2000 -

1000

0 1000

® 40 ¢ ¢

2000

latency

AR 2 2 4 2

3000 4000

5000

100K clients
1x production load

6000

¢ latency

26



624 T 02-T0-5T02
LEQPPTT0Z-TO-STOT
SESEPT 0Z-T0-5T0Z
ISt 0Z-T0-5102
00t 1T 0C 105102
S80ELPT 0Z-TO-5T0T
TTePT OZ-TO-510T
Pz Te T 0Z-T0-5T02
ZEOY YT 0Z-T0-ST0Z
09 6EHT0Z-T0-5T0Z
898E T 0Z-T0-5T02
ASLEPT0Z-TO-5T0T
POLE LT 0Z-TO-5T0T
TT96:pT 02-T0-5T02
61 SE LT 0Z-T0-5102
LT L BT 0105102
SEEE LT OZ-TO-5T0Z
£9ZTEHT OZ-TO-5T0Z
1STE0T02-T0-5T02
65061 0Z-T0-5T0T
S00E 41702 105102
PL6Z T 0L-10-5102
ITBTHT OZ-TO-5T0T
06LTHT OZ-TO-5T0T
8LAZPT0Z-T0-5T0Z
SYSZTPT0Z-T0-ST0Z
£SPT T 0Z-T0-ST0Z
1062 $1702-10-5102
60£2. 41T 0C 105102
LTTTHT 0Z-TO-5T0T
vZITPT 0Z-T0-5102
ZEOZT W 0Z-T0-ST0Z
0¥ ETPT0Z-T0-ST0Z
EYElpT 02 105102
SSLTHTTOC-T10-510Z
£0LTPT 0Z-T0-5T0T
TT9TPT 0Z-T0-5T02
STSTPT 0Z-T0-5T02
LT P 0Z-10-5102
PESTPT0Z-10-5102
ZeZTPTT0C-T0-5102
05 TT:pT 0Z-T0-5T0Z
8S0TPT 0Z-T0-5T0Z
00T 'PT0Z-T0-STOT
PLS0HTT02-10-5102
ZZBOHLTOZ-10-510L
62.L0'bT 0Z-TO-5T0Z
LE90PT OZ-TO-5T0T
SES0pT 0Z-T0-5T02
£SP0PT0Z-T0-ST0Z
100001 0Z-T0-5T02
S0£0.4TT 02 105102
LTZOHTT0L-10-5102
STTOPT 0Z-TO-5T0T
£600:pT OZ-TO-5T0Z
T$6SET02-T0-5T02

4x production load

100K clients

100000
10000
1000
100

10

1

27

a|eas bo|) spuodssI||iN




Queues build up

here at very high
load Global tree node
data store
socket handling decoding R
update update Some Of these update
handli handli handli
s process_ / PrOCESSES become omes
“hot”

1 process per TCP
connection

client socket
handler

client socket
handler

28



Work In progress




 An mnesia like database
» Without the storage backend issues

* And without the “partitioned network”
problems with mnesia

« Something similar to Infinispan




* Long term itch

« Seems fairly straightforward to achieve

= Additional option max_msg_ q_length in
process flag/2 BIF

= Modify process_info/2 BIF

= Kill process if message queue length
exceeds configured limit




* Analyse traffic patterns in real-time

* Proof of concept being worked on using
Erlang

« Speed will be an issue here so an
interesting challenge




COME WORK WITH US!




e)eellid( (&)

»‘-?."?’"."? C Y
‘l ‘o ¢ %“
‘ £




