Can | stop testing
NOW"?*?

Test adequacy metrics beyond cover

Ramsay laylor

The
University

o o ’ ROWESS

Sheffield.

lest Adequacy

lest Adequacy

lest Adequacy

...................

...................

...................

lest Adequacy

...................

...................

...................

lest Adequacy

...................

...................

...................

What we want from Test
Adequacy”?

e Have we tested all of the code”?
 Have we tested it in all meaningtul ways?

e |f the answer to either question is “no”, how can |
do better?

N this talk

 Code Coverage
- Testing all of the code that you have written
- Testing it in meaningful ways
* Mutation Testing
- Testing the code you might have written...
- Testing the code Iin novel ways
- Actually checking the answers!

e Model Inference

Code Coverage

-module(abiftest).
-export([dv/2]).

dv(A,B) ->
1f (A == 0) and (B > 4) ->
B;
true ->
B / A

end.

Code Coverage

-module(abiftest).
-export([dv/2]).

dv(A,B) ->
if (A == 0) and (B > 4) ->
5, dv(0,5)
true ->
B / A

end.

Code Coverage

-module(abiftest).
-export([dv/2]).

dv(A,B) ->
if (A == 0) and (B > 4) -> dv(0,5)
B;
ol s dv(5,5)
B/ A

end.

Code Coverage

¥ exception error:an error

occurred when evaluating an dv(0,5)
arithmetic expression dv(5,5)
in function abiftest:dv/2 dv(0,2)

(abiftest.erl, line 8)

Modified Condition/
Decision Coverage

* |nstrument not just what got called, but in what way

* Focus on decision points not large blocks of
sequential lines

 Measure/require all (reasonable) ways of taking or
not taking a branch

MC/DC

-module(abiftest).

-export([dv/2]).

""""

if (A == 0
"""""" B;
true ->

B/ A

dv(0,5)
dv(5,5)

MC/DC

-module(abiftest).
-export([dv/2]).

““““

if (A == 0 B_> 4)
_______ B;
truel ->
B/ A

-module(abiftest).

-export([dv/2]).

""""

"""""

(A==0)and (B > 4)

e matched: 1
e non-matched: 2

When false:

matched non-matched
A==0 0 2
B>4 1 1

Pattern Matching

-module(abtest).
-export([dv/2]).

[0,5]
dv (:0:,:5:) =>

D;
dv(Aa,B) -> matched: 1

"B / A. e non-matched: 2

When non-matched:

matched non-matched
00 2
51 1

Pattern Matching

-module(abcasetest).
-export([dv/2]).

...... {0,5)
dv(A,B) =->
case {A,B} of
0! 15} —> e matched: 1
_ B; « non-matched: 2
Loy -
" B/ A
end. When non-matched:

matched non-matched
0 0 2
5 1 1

Pattern Matching

-module(ablisttest).
-export([dv/1]).

...... [0,5]
dv(Arg) =->
case Arg of
0 51 —> e matched: 1
5 e non-matched: 2
(A,B]; —>
B/ A
end. When non-matched:
matched non-matched
0 0 2
5 1 1
empty_list 0 N/A
list size mismatch O N/A

not_a_list 0 N/A

Pattern Matching

dv_proci(); ->

receive
From when (A == 0 B > 4) ->
______ From ! Bj;
From -

From ! B / A
end.

Code coverage
limitations

® Only assess the code that you have written,
not the code you should have written...

® Says nothing except that the code has been
executed and maybe didn’t crash.

Mutation lesting

® Deliberately break the code and see if the
tests “‘notice”

® Try to simulate common faults
- Wwith the system

- with the programmer...

. erl
: source file

|dentify
possible mutations

Apply n
random mutations

N Mutants

Test results per mutant

® Fails - Good! It found the fault
® Passed - Bad! It didn’t notice the change

- unless its “semantically equivalent”

mu2 Framework

® Allows domain-specific operators to be
supplied

® Uses the Wrangler refactoring library to
allow rich and subtle mutation operators

mu?2 Operators

{plus_to minus,

?MUTATION MATCH("X@ + Y@"),

?MUTATION :

L XCHANG:

5 ("Xe + ye",

"X@ - Y@")}

mu2 Operators

{swap case order,
?MUTATION MATCH("if Guards@@@ -> Body@@@ end"),
?MUTATION("if Guards@@@ -> Body@@@ end",

begin

A = random:uniform(length(Guards@@@)),

B = random not n(length(Guards@@@), A),

NewGuards@@@ = swap(Guards@@@, A, B),

NewBody@@@ = swap(Body@@@, A, B),

?TO AST("if NewGuards@@@ -> NewBody@@@ end")
end)

mu2 Operators

{decrease timeout,
?MUTATION MATCH("receive
Pats@@@ when Guards@@@ -> Body@@@
after APats@@@ -> ABody@@@
end"),
?MUTATION("receive
Pats@@@ when Guards@@@ -> Body@@@
after APats@@ -> ABody@@ end",
begin
NewAPats@@ = lists:map(fun(Pat@) ->
?TO AST("(Pat@ / 100)")
end,
APats@@),
?TO AST("receive
Pats@@@ when Guards@@@ -> Body@@@
after NewAPats@@ -> ABody@@
end")
end) }

Mutation testing
limitations

® Have to compile lots of mutants

® Have to run the test set lots of times

Model Inference

Conclusions

® You should be testing your tests

= but don’t ask me to recurse again ;)

® Code coverage is cheap so use it

- but do it properly!

® Mutation testing is a useful complement

- but its expensive so use it wisely...

® Model inference is cool!

= look into it

Prototypes...

https://github.com/ramsay-t/Smother

https://github.com/ramsay-t/mu?

http://statechum.sourceforge.net/

https://github.com/ramsay-t/Smother
https://github.com/ramsay-t/mu2
http://statechum.sourceforge.net/

Questions!

