
Can I stop testing
now??

Test adequacy metrics beyond cover

Ramsay Taylor

Test Adequacy

Test Adequacy

Test Adequacy

Test Adequacy

Test Adequacy

What we want from Test
Adequacy?

• Have we tested all of the code?

• Have we tested it in all meaningful ways?

• If the answer to either question is “no”, how can I
do better?

In this talk
• Code Coverage

- Testing all of the code that you have written

- Testing it in meaningful ways

• Mutation Testing

- Testing the code you might have written…

- Testing the code in novel ways

- Actually checking the answers!

• Model Inference

Code Coverage

Code Coverage

dv(0,5)

Code Coverage

dv(0,5)
dv(5,5)

Code Coverage

dv(0,5)
dv(5,5)
dv(0,2)

** exception error: an error
occurred when evaluating an
arithmetic expression
 in function abiftest:dv/2
(abiftest.erl, line 8)

Modified Condition/
Decision Coverage

• Instrument not just what got called, but in what way

• Focus on decision points not large blocks of
sequential lines

• Measure/require all (reasonable) ways of taking or
not taking a branch

MC/DC

dv(0,5)
dv(5,5)

MC/DC

dv(0,5)
dv(5,5)
dv(5,0)

MC/DC

Pattern Matching

Pattern Matching

Pattern Matching

Pattern Matching

Code coverage
limitations

• Only assess the code that you have written,
not the code you should have written…

• Says nothing except that the code has been
executed and maybe didn’t crash.

Mutation Testing

• Deliberately break the code and see if the
tests “notice”

• Try to simulate common faults

- with the system

- with the programmer…

Test results per mutant

• Fails - Good! It found the fault

• Passed - Bad! It didn’t notice the change

- unless its “semantically equivalent”

mu2 Framework

• Allows domain-specific operators to be
supplied

• Uses the Wrangler refactoring library to
allow rich and subtle mutation operators

mu2 Operators

{plus_to_minus,

?MUTATION_MATCH("X@ + Y@"),

?MUTATION_EXCHANGE("X@ + Y@", "X@ - Y@")}

mu2 Operators

{swap_case_order,
?MUTATION_MATCH("if Guards@@@ -> Body@@@ end"),
?MUTATION("if Guards@@@ -> Body@@@ end",

begin
 A = random:uniform(length(Guards@@@)),
 B = random_not_n(length(Guards@@@), A),
 NewGuards@@@ = swap(Guards@@@, A, B),
 NewBody@@@ = swap(Body@@@, A, B),

 ?TO_AST("if NewGuards@@@ -> NewBody@@@ end")
end)

}

mu2 Operators
{decrease_timeout,
?MUTATION_MATCH("receive

 Pats@@@ when Guards@@@ -> Body@@@
after APats@@@ -> ABody@@@
end"),

?MUTATION("receive
 Pats@@@ when Guards@@@ -> Body@@@
 after APats@@ -> ABody@@ end",
 begin

 NewAPats@@ = lists:map(fun(Pat@) ->
 ?TO_AST("(Pat@ / 100)")
 end,
 APats@@),
 ?TO_AST("receive

 Pats@@@ when Guards@@@ -> Body@@@
 after NewAPats@@ -> ABody@@
 end")
 end)}

Mutation testing
limitations

• Have to compile lots of mutants

• Have to run the test set lots of times

Model Inference

Conclusions
• You should be testing your tests

- but don’t ask me to recurse again ;)

• Code coverage is cheap so use it

- but do it properly!

• Mutation testing is a useful complement

- but its expensive so use it wisely…

• Model inference is cool!

- look into it

Prototypes…

https://github.com/ramsay-t/Smother

https://github.com/ramsay-t/mu2

http://statechum.sourceforge.net/

https://github.com/ramsay-t/Smother
https://github.com/ramsay-t/mu2
http://statechum.sourceforge.net/

Questions?

