University SEVENTH FR;\MEWORK
of PROGRAMME
St Andrews

Megacore, Megafast, Megacool?
Functional Patterns of Parallelism

Kevin Hammond, Chris Brown, Vladimir Janjic
University of St Andrews, Scotland
Erlang User Conferencce, Stockholm, June 12, 2015

: ’; T: @rephrase_eu, @khstandrews) §
E: kh@cs.st-andrews.ac.uk, kevin@kevinhammond.net E PS RC
W: http://www.paraphrase-ict.eu

CEDEE http://www.rephrase-ict.eu :Sicsa*

Um'vefrsity
St Andrews

SEVENTH FRAMEWORK
PROGRAMME
ParaPhrase Project: Parallel Patterns for Heterogeneous Multicore Systems

(ICT-288570), 2011-2015, €4.2M budget

13 Partners, 8 European countries
UK, Italy, Germany, Austria, Ireland, Hungary, Poland, Israel

Coordinated by @khstandrews ll” m

N v 75k ROBERT GORDON
' @;.)ueen's University National o UHIVERSIW‘ABERDEEN
Belfast Co"ege of

Ireland UNIVERSITA
Mellanox B e I

DEGLI STUDI
TECHNOLOGIES

SOLUTIONS

DI TORIND l
=

ALMA UNIVERSITAS
TAURINENSIS

—l

hagenberyg UNIVERSTTA DI PISA

saltware compElence canlar

oA O

Univefrsity
St Andrews

Multicore is now ubiquitous

800 About This Mac

MacBook Air

11-inch, Mid 2011

Processor 1.8 GHz Intel Core i7

Memory 4 CGB 1333 MHz DDR3

Graphics Intel HD Graphics 3000 384 MB

Serial Humber_

Software OS5 X 10.8.4 (12E55)

| System Report... | | Software Update... |

° 2 &@@U Cores About This Mac

s Storage Memory

* 12 GPU Execution Units (Intel HDW&
2 HD video encoders/decoders 11-inch, !

Display

e 1 Bluetooth controller

| Processor

e 1 Disk con Memory 4

Graphics |

* 1 Power it

Serial Num

Software (

To Embedded

|_System Re Controlier

The Present:
From Multicore to Manycore

The Future: “megacore” computers?

* Hundreds of thousands, or millions, of (small) cores

What will “megacore” computers look
like?

= Nodes will be linked into systems
= Each nodes will have several large CPU cores
= plus specialist manycore accelerators
= Highly heterogeneous processor structure
= High-performance network to link nodes
= Not much memory per core

" Dealing with heterogeneity is a major problem!
= Most current models are very difficult to use well
= e.g. CUDA, Open(CL, ...

= Exascale systems will probably be heterogeneous
megacores

: i, D B

The Fastest Computer in the World
June 2013-date

One of the first
MEGACORE computers!

Tianhe-2, Chinese National University of Defence Technology

33.86 petaflops/s

16,000 Nodes; each with 2 Ivy Bridge multicores and 3 Xeon Phis
3,120,000 x86 cores in total!!!

What will future “megacore” computers
look like?

* Probably not shared memory
= not all memory will cost the same to address
= maybe hardware distributed shared memory
* maybe hardware transactional memory

= Assuming afully shared memory will not work!
= But most models make the programmer do all the work!
" e.qg. Partitioned Global Address Space (PGAS)

= Side effects will not work!

ExaScale Megacore Computers

University
of
St Andrews

1,000,000,000,000,000,000

AN EXASCALE COMPUTER WILL PERFORM ONE QUINTILLION OPERATIONS PER SECOND.

An exascale computer can
perform as many calculations
per second as about

SO MILLION LAPTOPS.

AN EXASCALE COMPUTER WILL BE

33 TIMES

FASTER

than today's most powerful supercomputer:

Tianhe-2

:

Current projections for power
consumption of exascale
computers is put at

100 MEGAWATTS -

the same amount of power as
ONE MILLION 100-WATT
lightbulbs

20207

Scientists hope to build an exascale computer by
2018 with the Europe, China, Japan and the U.S, all
investing hundreds of millions of $3$3.

The processing power will transform sciences such S .
as astrophysics and blology as well as improving ource:
climate modelling and national security. CNN

Is this megacool?

Univefrsity
St Andrews

Image by Daniel Case

Or really megahot? &>

Univefrsity
Ol
St Andrews

* Energy usage scales:

e linearly with the number of cores
Power density

e cubically with the clock frequency 10000
2o 1 s
* Power density is critical 1000
* smaller process sizes (e.g. 22nm)
need less energy 100
e Butacore 1/30 of the size will still
10

consume 1/8 of the power!

* We are reaching limits on 2

heat dissipation! 148008 d085 ' ; - .
1970 1980 1990 2000 2010

Pontiver
84]

Source: Patterson and Hennessey

» Efficient use of Energy is a major concern

“Embedded Supercomputing”:

Nvidia Tegra K1

DEOEREERM MEEEA©NEE
EENENEACM CONANNEE

Kepler GPU

2160p30
ARM7 VIDEO
ENCODER

USB SECURITY

30 ENGINE HOM

MIPI DDR3L
DSty CSi/ [-Q“;‘C LPDDR2

'----

i i
4-PLUS-1 i
lCortex Al15 1
ur3’) l

i

----J

2160p30
VIDEO AUDIO
DECODER

o 4 Fast ARM Cortex A15 Cores
« 1 Slower Low-Power A15 Core

« Cores can be enabled
individually, the rest are dark

o 192-core Kepler GPU

« 2 GB RAM
« Shared Between CPU and GPU

o 1-5W Peak Power Usage
(60W Max)

A R

@)

Dark Silicon B

St Andrews

* Not all the processor is powered

* reduces power usage
* (maybe not all CAN be powered!)

e Execution units are powered up
when needed

* e.g.to deal with video processing, security,
etc

All future programming will be parallel

= No future system will be single-core
= parallel programming will be essential

= |t’s not just about performance
" jt’s also about energy usage

= |f we don’t solve the multicore challenge, then no other advances
will matter!
= user interfaces

cyber-physical systems

= games

robotics

The Manycore Challenge

Univefzrsity
St Andrews

“Ultimately, developers should start thinking about tens, hundreds, and
thousands of cores now in their algorithmic development and deployment

pipeline.” =

The important challenge in Computer Science

(Intel) |

Also recognised as thematic priorities by EU and
national funding bodies

Patrick Leonard, Vice President for Product Development
Rogue Wave Software

But Does it Scale?

What to millions of threads??

o o o I\ PFib.eventlog - ThreadScope
w Move Help

FdS Qe q
es Eag[qrnm| Timeline
anning
ic
reate thread Activity

Univefrsity
St Andrews

eq GC req F
ar GC req :
ligrate thread
hread wakeup
hutdown

ser message
erf counter

erf tracepoint
reate spark

ud spark
verflowed spark
an spark

Time ‘ Heap | GC

zzled spark
iCed spark HEC \,
Toted 331161522 2014
HEC 0
HEC 1 16632074 2706 T 1o5U0HUS LU
- > HEC 2 215860942 2121] 0 20474440 971840

1tlog (1455511 events, 5.111s)

Univef:rsity
St Andrews

How to build a wall

u13279276 fotosearc! h.com

(with apologies to lan Watson, Univ. Manchester)

.
Q
=
5
S
I
S
(g0]
O
=
O
O
o
S
O
L

How NOT to build a wall

Typical CONCURRENCY
Approaches require the

to solve these.
Can limit scalability

u13279276 fotosearc! h.com

Task identification is not the only problem...
Must also consider Coordination, communication, placement,
scheduling, ...

We need structure
We need abstraction

We don’t need another brick in the wall

Thinking Parallel

Univefrsity
Ol
St Andrews

Ill

* Fundamentally, programmers must learn to “think paralle

= this requires new high-level programming constructs
= perhaps dealing with hundreds of millions of threads

= You cannot program effectively while worrying about deadlocks etc.
= they must be eliminated from the design!

= You cannot program effectively while fiddling with communication etc.
= this needs to be packaged/abstracted!

A Solution?

“The only thing that works for
parallelism is functional
programming”

Bob Harper, Carnegie Mellon University

Parallel Functional Programming

= Purity means no side-effects
= Easy to find parallelism
= |mpossible for parallel processes to interfere with each other
= Can debug sequentially but run in parallel
= Enormous saving in effort

= Programmers concentrate on solving the problem
= Not porting a sequential algorithm into a (ill-defined) parallel domain

= No locks, deadlocks or race conditions!!

= Huge productivity gains!

Parallelism is not Concurrency

Univefrsity
Ol
St Andrews

= Concurrency is a programming abstraction
= Theillusion of independent threads of execution

= Parallelism is a hardware artefact
= The reality of threads executing at the same time

= Concurrency is about breaking a program down into separate units of

computation (conceptual)
= Parallelism is about making things happen at the same time (practical)

= A parallel program has thousands or millions of tiny threads

= A concurrent program has a few huge threads

The ParaPhrase (ParTE) Approach

= Start bottom-up
= jdentify (non-side-effecting) COMPONENTS (BRICKS)

" using semi-automated refactoring both legacy and

new programs

= Think about the PATTERN of parallelism
= e.g. map(reduce), task farm, parallel search, parallel completion, ...

= STRUCTURE the components into a parallel program
= turn the patterns into concrete (skeleton) code
= Take performance, energy etc. into account (multi-objective optimisation)

= also using refactoring

= RESTRUCTURE if necessary! (also using refactoring)
y g g
3: - 1:

PaRTE - General Technique

| |

Program Shaping

Pattern
Discovery

¥

Refactoring Tool

Novice/Beginner/
Professor

Expert Knowledge

v

Refactored
Parallel Erlang Source Code

The ParaPhrase Approach

Sequential Erlang Haskell Scala F#

Code v WV //
Generic N Costl ng/
Pattern Library Proﬁlmg

Parallel / & * \\ @
Code Erlang Haskell Scala

T Mellanox Infiniband

Intel
Xeon Phi

Opteron Opteron

Nvidia Nvidia
_) GPU GPU

oA O

Univefrsity
St Andrews

Some Common Patterns

= High-level abstract patterns of common parallel algorithms

Farm Reduce
w) f‘
5 s f
2 T f /
7’ \\\\\ / o T f —>»
Sched ule tasks w Gather results : el
Pipeline el
7
R TR Divide&Conquer
Map = - NN -
w / N — 7 \
2 >l b . el >
’,l, \\\\ \ B /
Partition w Rebuild

Bricks are Functional

= We can construct a closure (aka a future) to capture some
computation, e.g. in Parallel Haskell:

brick = ... {- an expression to evaluate in parallel -}

-- now run brick in parallel using the par construct

par brick {-the main computation -}

In a strict language (Erlang, Scala, ...), you can simply turn it
into a function...

brick [] = ...
par (fun brick []) ...

Bricks are Functional

= We can construct a closure (aka a future) to capture some
computation, e.g. in Parallel Haskell:

brick = ... {- an expression to evaluate in parallel -}

-- now run brick in parallel using the par construct

par brick {-the main computation -}

In a strict language (Erlang, Scala, ...), you can simply turn a
brick into a function...

brick [] = ...
par (fun brick) ...

Parallel Patterns are Functional

= Higher-order functions can capture parallel patterns

-- warning: pidgin-Erlang follows
parmap F [X|Xs] = par (F X) (parmap F Xs)
parmap F [] =}

-- build the bricks

bricks Input = parmap makebrick Input

= These functions are often called skeletons (Murray Cole, 1989)

The Skel Library for Erlang

= Skeletons implement specific parallel patterns
= Pluggable templates

= Skel is a new (AND ONLY!) Skeleton library in Erlang

= map, farm, reduce, pipeline, feedback
" instantiated using skel:do

= Fully Nestable http://skel.weebly.com |

https://github.com/ParaPhrase/skel

= A DSL for parallelism

OutputItems = skel:do(Skeleton, InputlItems).

Parallel Pipeline Skeleton

= Each stage of the pipeline can be executed in parallel
= The input and output are streams

{pipe, [Skely, Skels, - -, Skel,]}

skel:do([{pipe,[Skell, Skel2,..,SkelN]}], Inputs).

Farm Skeleton

= Each worker is executed in parallel
= A bit like a 1-stage pipeline

skel:do([{farm, Skel, M}], Inputs).

-: - n.

Map Skeleton

skel:do([{map, Skel, Decomp, Recomp}],
Inputs).

Example: Ant Colony Optimisation

Univef:rsity
St Andrews

= Tries to find a good solution to a particular scheduling problem

= find a schedule which minimises the time by which each job misses its deadline

= N/ possible schedules for N jobs. Solving this is NP-hard.

Ant Colony — Parallelisation

* Ants can be parallelised with Parallel Map pattern
 Complete computation needs to be wrapped into a Feedback pattern

Feedback

Ant Colony

Univefrsity
Ol
St Andrews

 Pheromone trail in this case is a matrix where entry (i,j) is the probability that
jobjisi-th in the schedule

* Parallel structure of a program is

Ant Colony Code: Nested Skeletons

Univefrsity
Ol
St Andrews

ant colony (FName, Num Ants, Num Iters, NWs) ->
_{Num;Jobs, Procesg;Iime, Weight, Deadline, Tau} = binary init (FName),
Task = {Num Jobs, Process Time, Weight, Deadline, Tau, Num Iters},
ChunkSize = calculate_chunk size (Num Ants div 64, NWs),
InputlList = create_input list(ChunkSizes, 64, Task),
Pipe = {pipe, [{map, [{func, fun(X) ->
lists:map(fun find solution/1l, X) end}],

fun(X) -> X end,

fun(X) -> X end},

{func, fun(X) -> pickbest update (NWs, ChunkSize, X) end}]},
Feedback = {feedback, [Pipe], fun(X) -> ant_ feedback (X) end},
skel:do ([Feedback], [InputList]).

ParaPhrase Project Vision

Univefzrsity
St Andrews

BSP, mapReduce,
___________________________________ Farm, ... O e

Initial Program \ Patterns ‘\RefactoringRuIes) |
Identify Components —> Refactoring <—— Performance Info | pTmmmmmmmmmmmmmmmmmmooooooooooes

Execution on Heterogeneous
Hardware Platform

Parallelisable Program Parallel Program i

“-- High Level ----------- - oo e Static CPU |
Mapping i

r— Low Level ------------mmmmmmmmmm oo e S ! ! GPU |
| v | | |
i Refactoring «<— Performance Info i : i
i Machine i
E Learning . |
| ! CPU
: Dynamic i
: Re-Mappin :
: Compilation PPINg GPU .

Refactoring

Univefrsity
Ol
St Andrews

= Refactoring changes the e — ==

D e x @ 4 Refactor » Rename Variable Name CcCwrv
Inspector > Rename Function Name C-cC-wrf
f h “module (test) . Undo e Rename Module Name C-cC-wrm
structure of the source code -
Tl ErrelEEErm > Move Function to Another Module C-cC-wm
repea; (3) when N=<0 —> Skeletons > Function Extraction C-cC-wnf
. . epeat (8) —> o — —— Introduce New Variable C-cC-wnv
[] uSI ng Wel |_d eﬁ ned ru |eS io:format ("Hello™), - Inline Variable C-cC-wi
repeat (N-1) . Version Fold Expression Against Function C-cC-wff
0 > Tuple Function Arguments C-cC-wt
repeat (S) . Unfold Function Application C-cC-wu
= semi-automatically under
y Fold Against Macro Definition C-cC-wfm
Refactorings for QuickCheck »

programmer guidance :

Normalise Record Expression
Partition Exported Functions

gen_fsm State Data to Record

gen_refac Refacs >
gen_composite_refac Refacs >
My gen_refac Refacs >
My gen_composite_refac Refacs >

Apply Adhoc Refactoring
Apply Composite Refactoring

Add To My gen_refac Refacs
—— (Unix)— test.erl 211 L (Erlang EXT)
New parameter name

Add To My gen_composite_refac Refacs

Review Refactor

Refactoring: Farm Introduction

Image Processing Example

Read Image 1 Read Image 2

|

White
screening

Write Image

Basic Erlang Structure

[writeImage(convertMerge(readImage(X)))
|| X <- Images()]

readImage({Inl, in2, out) ->
{ Imagel, Image2, out}.
convertImage({Imagel, Image2, out}) ->
ImagelP = whiteScreen(Imagel),

Image2P = mergelmages(Imagel, Image2),

{Image2P, out}.

writeImage({Image, Out}) -> ..

Program Structure

Sequential

for each image, i.
write (convert (read i))

Parallel

Pipeline

- convert BBamd

Alternative Program Structure

Sequential

for each image, i.
write (convert (read i))

Parallel

write . write . WVigi=

convert . convert . convert.
read read read

Refactoring

Uruver51ty
St Andrews

chris@titanic:~ [screen O: bash] chris@titanic:~ /skelEUC

=0

refac_api_migrotion.erl refgc_rename_var.erl wrongler_expand_rule, erl wrangler_unificat! 1024 3145728 /nges/mer'gedBB png
refac_batch_rename_fun,erl refac_sim_code.erl wrangler_generalised_unification.erl wrangler_write_fi] finished
refac_bug_cond.erl refac_sim_expr_search.erl wrangler_gen.erl 1024 3145728 ./images/merged3Z.png
refac_clone_evolution.erl refac_state_to_record.erl wrangler_gen_refac_server,erl finished
refac_comment_out_spec.erl refac_tuple.erl wrangler_io.erl 1024 3145728 ./images/merged3l.png
[chris@titanic src]$ cd .. finished
[chris@titanic wrangler]$ 1s 1024 3145728 ./images/merged3@.png
aclocal.mé config.log configure c_src ebin include LICENCE Makefile.in qc_test src finished
CHANGELOG config.status configure.ac doc elisp INSTALL Makefile priv README. txt wvsn.mk 1024 3145728 ./images/mergedz29.png
[chris@titanic wrangler]$ cd .. finished
[chris@titanic ~]$ 1s 1024 3145728 ./images/mergedz8.png
1dHaar. txt CUDA EUCexamples.tar.gz locktest.tar.gz nvidia-sdk.tar.gz skel sk Finished
ant-colony d6.5 fastflow-1.1.9 __MACOSX openCL skelEUC 511024 3145728 ./images/mergedzZ?.png
ant-colony.tar.gz d6.5.tar.gz fostflow-1.1.@.tar matMultPar.erl OpenCL_Hello_World_Example skel-master sifinished
ant-erlang Dewv include motMultSeq.erl OpenCL_Hello_World_Example.zip skel.tar.gz t¢ 1024 3145728 ./images/mergedZ26.png
ant-erlang.tar.gz EUC lib mc-fastflow perceptZ skel.zip t¢ finished
convolution EUCexamples locktest nvidia-sdk RefactoringExamples skepu te 1024 3145728 ./imoges/merged2S.png
[chris@titanic ~]3 cd skelEUC finished
[chris@titanic skelEUCIS 1s 1024 3145728 ./images/mergedzZ4.png
1dHaar_chunking4.txt 2dHoarSeq.txt doc farms@. txt include pipe.txt result: finished
ldHaarChunking4.txt 2dHoar. .txt dp_seq_chunking.erl farm.txt libpngl5.s0.15 priv seq.txi 1824 3145728 ./images/mergedZ3.png
ldHaarChunking8.txt DeNoiseResultsZ.txt ebin HACKING Makefile README src finished
1dHaarSeq. txt denoiseResults.txt erl_crash.dump imagePipe.txt pipe3.txt rebar sumEule 1824 3145728 ./images/mergedZZ.png
1dHaar. txt DeNoiseResults.txt examples images pipe5@.txt rebar.config sumtult finished
[chris@titanic skelEUC]S ed .. 1024 3145728 ./images/mergedZl.png
[chris@titanic ~]% 1s finished
1dHaar. txt CUDA EUCexamples.tar.gz locktest.tar.gz nvidio-sdk.tar.gz skel sl 1824 3145728 ./images/merged2@.png
ant-colony d6.5 fastflow-1.1.@ __MACOSX openCL skelEUC 51 finished
ant-colony.tar.gz d6.5.tar.gz fastflow-1.1.@.tar matMultPar.erl OpenCL_Hello_World_Example skel-master si1024 3145728 ./images/mergedlS.png
ant-erlang Dev include matMultSeq.erl OpenCL_Hello_World_Example.zip skel.tar.gz 4 finished
ant-erlang.tar.gz EUC lib mc-fastflow percept2 skel.zip +£¢ 1024 3145728 ./images/merged18.png
convolution ElUCexamples locktest nvidia-sdk RefactoringExamples skepu ¢ finished
[chris@titanic ~]$ erl 1024 3145728 ./images/mergedl?.png
Erlang R15B@Z (erts-5.9.2) [source] [64-bit] [smp:24:24] [async-threads:@] [hipe] [kernel-poll:false] finished

1024 3145728 ./images/mergedl6.png
Eshell V5.9.2 (abort with AG) finished
1> lists:reverse([1,2,3]). 1024 3145728 ./images/mergedlS.png
[3:2.1) finished
2> lists:flattern[[1],[2]12. 1024 3145728 ./images/mergedl4.png
* 1: syntax error before: '[' finished
2> lists:flattern([[1],[277). 1024 3145728 ./imoges/mergedl3.png
** exception error: undefined function lists:flatterns/l finished
3> lists:flatten([[1],[217D. 1024 3145728 ./imoges/mergedlZ.png
[1,2] finished

4>|:|

Speedup Results &>

Univefrsity
Ol
St Andrews

= 24 core machine at Uni. Pisa ,
Speedups for Image Processing
= AMD Opteron 6176. 800 Mhz I —

—@— Pipe(Read, Merge, Write)

u 32GB RAM 24 i —@— Pipe(Farm(Read), Merge, Farm(Write))

—@®— Farm(Read, Merge, Write)

[| | | | | | | | | | | |
12 4 6 8 1012 14 16 18 20 22 24
No of Cores

Speedup Results (Image Processing) E>

Univefrsity
St Andrews

Speedups for Haar Transform (Skel Task Farm)

| [T [[\ T
924 —— 1D Skel Task Farm N

929 —— 1D Skel Task Farm with Chunk Size = 4 |
20 —— 2D Skel Task Farm .
18 ~
16 - ~

Speedup
—_ =

N > O 00 O N &~
\
\

12 4 8 12 16 20 24
No. Farm Workers

Large-Scale Demonstrator Applications

» ParaPhrase tools are being used by commercial/end-user partners
= SCCH (SME, Austria)
= Erlang Solutions Ltd (SME, UK)
= Mellanox (Israel)
= ELTESoft, Hungary (SME)
= AGH (University, Poland)
= HLRS (High Performance Computing Centre, Germany)

Examples: Computational Molecular
Dynamics g

= Simulates interactions between molecules
= Thermodynamic properties of fluids and gases
= Cultivated for basic research into HPC

= Features multiple MD data structures, algorithms
and parallelization strategies

= Allows quantitative comparisons

= Two widely used data structures with

= corresponding algorithms
= BasicN2
= MoleculeBlocks

oA O

Examples: Machine Learning Methods &>

Univefrsity
St Andrews

= @Graphical Lasso
= Determine direct linear influences
= |terative matrix inversion algorithm:
= for each independent components of the matrix
= by iteratively solving a matrix inversion problem:
= for each feature

= jteratively solve a lasso regression

= Ant-Colony Optmisation
= tries to find a good solution to a particular scheduling problem
= each job has a specified duration and weight.

= find a sequential schedule (ie, a permutation of the jobs)
which minimises the time by which each job misses its
deadline

= N/ possible schedules for N jobs. Solving this is NP-hard.

Waste Water Prediction

Univefrsity
Ol
St Andrews

= Large industrial plant, residential and
business neighborhood

= Predict total organic carbon content

= Find dependency structure
= Robust prediction model

= Using techniques such as graphical lasso, granger

causality
= |nput: throughput, chemical analyses, control @
parameters
= =6000 features each hour, since 2.5 years

Speedup Results (demonstrators)

Univefrsity
St Andrews

Speedups for Ant Colony, BasicN2 and Graphical Lasso

2 4 | | —=— BasicN2 N
— = — BasicN2 Manual
22 B —<&—— Graphical Lasso
20 — | — 4 — Graphical Lasso Manual
1 8 | | —A— Ant Colony Optimisation Manual
— A — Ant Col Optimisati
]_6 B nt Colony Optimisation Speedup Close to
oF
= |
3 . ERIE]
a 12 B R et
! 10 -

N = O OO
\

Bowtie2: most widely used DNA

alignment tool

Univefrsity
Ol
St Andrews

28

26

24

22

20

Speedup

~/

18

/

Bt2FF-pin+int

Blt2 —

14
20 30

B Original

. Paraphrase

40

50

60 70 80 90 100
Read Length

110

30

25

N N
N \

15 Bt2FF-pin+int
Bﬂ2l—-*-—

28 30 32 34 36 38 40

Quality

Speedup

Metric Bt2FF-pin+int Bt2 interleaved

CPUs utilised 30.408 28.655

Context-switches 34816 199592

CPU-migrations 53 901

IPC 1.01 0.75

Stalled cycles per insn 0.58 0.93

Stalled-cycles-frontend 58.59% 69.67%

Stalled-cycles-backend 38.53% 53.19%

Branches-misses 5.08% 5.20% . . .
L1-doache-misses 4.07% 3.929% C..Mlsale. Accelerating Bowtie2
(of all L1-dcache hits) with a lock-less concurrency
LLC-load-misses 41.62% 46.14% approach and memory affinity.
(of all LL-cache hits) IEEE PDP 2014. To appear.
Execution time (s) 35 55

DLl

Comparison of Development Times

Man.Time | Refac. Time
Convolution | 3 days 3 hours
Ant Colony | 1 day 1 hour
BasicN2 | 5 days 5 hours
Graphical Lasso | 15 hours 2 hours

Evolutionary
Multi-Agent Systems (EMAS) ;@DA

= Meta heuristic approach for {r—
optimization
" universal optimization algorithm
(formally proven)

= Agents
= |ocated on evolutionary islands

= perform actions
(death, reproduction, migration,
fight)

MAS — Basic Structure

Group

Agents

MAS — Pattern Discovery

Introduce Farm

MAS — Program Shaping

Group together stages and remove dependencies

Tag I—)| Migrant I—)| Group

------r-------| Shuffle (—| Agents
]

-y

<€

MAS — Advanced Refactoring

Feedback with Pipeline and Farm

P‘ Tag |—)| Migrant |—)| Group
[
I
L
l
) bl il Wllw|[w]|w
Feedback Farm

University
0l

MAS - Results

—e— erlang lists
—e— binaries

Speedup

10

56

EMAS Erlang Implementations M

Sequential: The population is processed by a single process. It is
split between groups of agents having the same behaviour on
the same island.

Concurrent: Every agent is represented by a different process and
all communication uses message-passing. Agent interactions are
mediated by “meeting arenas”.

SKEL: The sequential implementation refactored into a SKEL

workflow. Independent agent meetings are mapped and
performed in parallel.

Hybrid SKEL: Every island is processed by a different process in the
same way as in the sequential version.

T T IPARAPH

Optimization Benchmark lﬂmm

" Find optimum of Rastrigin function in dimensions 72=100

= One of classic global optimization benchmark functions

= Example: Rastrigin function in two dimensions

LABS I

Low-Autocorrelation Binary Sequences AGH

= S=5d1 542 ... 541 :binary sequence of length Z and s/

e{—1,+1}
= Aperiodic Autocorrelation with lag 4: Clk (S)=)i=1T.—Fki#isli
stk

10} wwees ot weees o e Ewe——

Find S

EMAS : Speed-Up

Rastringin Problem LABS Problem
Computation / Communication = Low Computation / Communication = High
BO =g e s T = evmenim SOmENe SRS IOTRUSERAREANGS SRR SN TN TR 25
—e— Skel —e— Skel
—e— Hybrid —se— Hybrid
Concurrent 60 il Concurrent ..

! ! ! ! 0

T 1 T 1
14 8 16 32 48 64 14 8 16 32 48
Cores

Figure 2.1: MAS versions speedup for the Rastrigin problem. Figure 2.2: MAS versions speedup for the LABS problem.

EMAS : Coding Efficiency lﬂmm

= Effort for implementing the generic EMAS backends

_ Lines of Code Effort in Days

Sequential 85 10
Concurrent 353 7
SKEL 100 1

EMAS : Coding Efficiency

Univefrsity
St Andrews

= Effort for implementing the generic EMAS backends

_ Lines of Code Effort in Days

Sequential 85 10
Hybrid 129 2
Concurrent 353 7

SKEL 100 1

EMAS : Coding Efficiency

Univefrsity
St Andrews

= Effort for implementing the generic EMAS backends

_ Lines of Code Effort in Days

Sequential 85 10
Concurrent 353 7
SKEL 100 1

Hybrid SKEL 129 2

EMAS in Production Mmm

AGH
= ParaMAS is used in Campanja’s product AdWords Planner,
dealing with advertisement campaigns.
= (Client available at Google Play
> Google play | suchen
Kategorien v Startseite Top-Charts Neuerscheinungen

M A
e[he p_ps AdWords Planner
Einkaufen Campanja - 29 April 2015
Buro
Spiele campanja : ‘ E Zur Wunschliste

Empfehlungen : "
Bietet In-App-Kaufe an

*hhhd 2.

TN LA IPARAPHE

oA O

Univefrsity
St Andrews

Well does it?

Distributed BasicN2 on Hermit
1,536 cores using Hybrid implementation

128.00 /
64.00

32.00 /

16.00 /

8.00 /

4.00 //

2.00

1.00

ParaPhrase Success

= Applications from different areas have successfully been
parallelized

= Programmer productivity was significantly increased by the
availability of new generic as well as domain-specific patterns

= Speedups close to the expected theoretical value

= Automatic pattern candidate discovery techniques can indeed
find meaningful patterns in (Erlang) code bases

= ParaPhrase technology is used in production code

= Heterogeneous patterns provide a unified approach, rather than

using different programming paradigms for parallelizing CPU and
GPU codes

ParaPhrase Success

= Applications from different areas have successfully been
parallelized

" Programmer productivity was significa eased by the

availability of new generic as well as -specific patterns
= Speedups close to the expected cal value

= Automatic patte
find meaningful pa

y techniques can indeed
code bases

= ParaPhrase technolo production code

= Heterogeneous pattern

using different programm
GPU codes

e a unified approach, rather than
paradigms for parallelizing CPU and

A R

@)

It’s not just about large systems &>

Univefrsity
Ol
St Andrews

* Even mobile phones are multicore

= Samsung Exynos 5 Octa has 8 cores, 4 of
which are Dark

* Performance/energy tradeoffs mean
systems will be increasingly parallel

* Even embedded systems are becoming
multicore and heterogeneous

* NVidia Tegra TK1 has integrated 5 ARM
CPU cores and 192-core Kepler GPU ALL Future

Programming will be

* If we don’t solve the multicore challenge, Parallel!
then no other computing advances will
matter!

An Endorsement from a Happy
Customer

Functions deal with heterogeneity
(e.g. CPUs and GPUs at the same time)

Closures can be compiled differently for different platforms.
——- Haskell
data Procs = CPU | GPU

brick CPU = ... parmap ...
brick GPU = ... Data.Accelerate.map ...

The RTS can choose dynamically between closure types

brick (if cost brick CPU < cost brick GPU then CPU else GPU) data

Lapedo: a Framework for Hybrid Skeletons

Univefrsity
Ol
St Andrews

« Extends Skel for Erlang with hybrid skeletons for GPU/CPU computations
« Builds on the CL library for interfacing to OpenCL code
« New refactorings for:
o introducing hybrid skeletons
« switching between CPU/GPU implementations
« semi-automatic code generation

https://github.com/ParaPhrase/skel |

Example: Introducing Hybrid Skeleton

Univefrsity
Ol
St Andrews

nbody(Particles,0) -> Particles;
nbody(Particles, Nlters) ->

NewParticles = lists:map (fun(X) -> nbody_cpu (X,Parts) end, Particles),
nbody(NewParticles, Nlters-1).

ParMaplntro Refactoring

nbody(Particles,0)->Particles; v

nbody(Particles,Nlters) ->
Map = {map, [{seq, fun(X) -> map (fun nbody_cpu/1, X) end}],
fun split/1,
fun combine/1},
NewParticles = skel:do([Map],[Particles]),
nbody(NewParticles,Nlters-1).

HybMapintro Refactoring
iter = fun(NCPU, NGPU) -> N/

Map {map, [{seq, fun(X) -> het_map:het_dispatcher(

fun(Y) -> nbody cpu(Y,Particles,0.0001) end,

fun(Y) -> nbody gpu(Y,Particles,0.0001) end,
X) end}],

fun(X) -> het _map:het_split(fun split/2,X,NCPU,NGPU) end,
fun combine/1},

Results = skel:do([Map],[Particles]),
Result.

The CL Erlang Library

« Provides Simplified bindings to C OpenCL functions

« Supports data transfers between CPU and GPU and GPU kernel execution

« Basic marshalling mechanisms — from Erlang Binaries to C Arrays

E = clu:setup(all),
{ok,Program} = clu:build source(E, Source),

{ok,Kernel} = cl:create kernel (Program,
"lmageMergeKernel"),

AT N LA IBARA PHRASE (| T A N[FLEC A0

Speedups for Image Merge

Univefrsity
St Andrews

Speedups for Image Merge

\ | |
24 | | —— CPU Binary version
—— CPU ETS version
—=— Hybrid version (1 GPU)
16 |-
Q.
=
.S
)
Q.
)
8 2
1 E=S =]
| | | | \
012 4 6 8 10 12 16 20 24
No. CPU workers
2 x AMD Opteron 6176 (24 CPU cores at 800MHz)

1 x NVidia Tesla Fermi C2050 (448 GPU cores @ 1.15GHz)

Speedups for Nbody Simulation

Speedups for hybrid version of N-Body

{ ‘ ' i |

220

Speedup

25 |- J . -

| I

l \ l
012 4 6 8 10 12 16 24

No. CPU workers in map

e X

Speedups for Ant Colony Optimisation

University
St Anocflrews
[|
65 —+— LList version
T —+— Binary version
11 —a— ETS version
! - «- Hybrid Version
N '.
z |
FD |
8 |
DI-' |
D94 |
|
16 '.
I
8 \ :
1 . .
| | | | |
012 4 6 8 10 12 16

20 24

Automatic Pattern Discovery

~

Parameters

Erlang code

Y

STATIC ANALYSIS

RefactorErl

Skeleton candidate chains

Y

-

A

COST MODEL

A

A

Copy speed
Spawn speed

CALIBRATOR

Par. run. time

»
-

y Expression s
COSTING BENCHMARK
/7 Seq. run. time ™
Random Encapsulated
arguments, expression
Types
QuickCheck |« Dialyzer / Typer
Transformation
candidates

Yo
HOOOA
elelolalele
olelelelelele
mmERRS®

Univefrsity
Ol
St Andrews

Automatic Pattern Discovery

| @ localhost:34307/paraph

rase/refpp_

WwebD_services)

+@| |B~ Google

output

Pattern Candidate Browser

“Transformation sequences

1D Configuration Module Function Arity Number of workers Expected speedup (CPU) Expected speedup (GPU)
38 (!('e9965)) matMult theSkel 2 340 304.23
41 (1(lel1501)) matMult2 theSkel 2 340 304.23
46 (!(le12819)) matrix mult_seq_1 2 340 276.45
30 (/('el1715)) matMult2 run_all_examples 1 260 254.07
53 (1('e13496)) matrix_ex mult_seq 2 340 245.93
54 (1(!('e13548)) matrix_ex mult_seq 2 340 226.05
8 ('el11630) matMult2 randmat 3 257 173.76
5 (1e10101) matMult randmat 3 257 173.21
11 (le13256) matrix randmat 3 257 171.88
3 (1e8681) main randmat 3 257 169.11
2 EEEEE]
| Chart options v |
@ Details of the transformation sequence
Parallel Expected
Configuration Location information Program text AL Sy ioiifesd Sr T soallZfend GPU speedup
workers time GPU time time
time (CPU)
Thome/viwork/paraphrase/repo/referl
e12819 ftool/matrix/matrix.er : {{37,16}.{37,18}} - fun(C) -> multSum(R, C) end 1 0.51 0.00 0.51 0.00 1.00
{{37. 40}, {37, 42}}
Ihomefviwork/paraphrase/repo/referl N R
(le12819) Itool/matrix/matrix.erl - {{37,6},{37,10]} - li:f'ré'sz“"m) > muitSum(R, C) 2 5,050.16 0.00 3,080.58 0.00 1.64
{{37. 49}, {37, 49 ’)
Thome/viwork/paraphrasefrepo/referl lists:mapifun(R) -= lists:map(fun(C)
(1(le12819)) Itool/matrix/matrix.er : {{36,271.{36,31}} - -> multSum(R, C) end, Cols) end, 170 50,501,604.68 0.00 182,678.93 0.00 276.45

{{38. 18}, {38. 18}}
v

Chart options

Rows)

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Recommended?

Expected
speedup

(GPU)

1.00

1.00

1.00

<

AU S S S VA N T

Used stream
length

10,000

10,000

Is this megacool?

Univefrsity
St Andrews

Image by Daniel Case

Or megahot?

A R

@)

&3

Univefrsity
Ol
St Andrews

¢ Energy usage scales:
e linearly with the number of cores
e cubically with the clock frequency

* Power density is critical

* smaller process sizes (e.g. 22nm)
need less energy

e Butacore 1/30 of the size will still
consume 1/8 of the power!

* We are reaching limits on
heat dissipation!

Power density

10000

IW/an'} rocket

nozzle

1000

100

10

Pontiver
80 |
* L J

1990 2000

2
1 1 B008 8HOS5 _

1970 1980

Source: Patterson and Hennessey

* Efficient use of Energy is a major concern

e K

How Functional Programming can Help &>

Univefrsity
Ol
St Andrews

* Lots of small tasks are better than a few big ones

* can use more lower-powered cores
* easy to do this with closure-based techniques

* Functional programs can be easily parameterised

* e.g. with energy models, performance costs

* Information can even be lifted into a type!

Source: Patterson and Hennessey

Conclusions

Univefrsity
Ol
St Andrews

= The manycore revolution is upon us
= Computer hardware is changing very rapidly (more than in the last 50 years)
= The megacore era is already here! (aka exascale, BIG data)

= Heterogeneity and energy are both important

= Most programming models are too low-level
= concurrency based
= unable to expose mass parallelism

= Patterns and functional programming greatly aid abstraction

= millions of threads, easily controlled
= easy scalability, deals with heterogeneity, can deal with dark silicon

" (pure) closures and higher-order functions are key to unlocking megacore!

Some Open Research Challenges

= How do we deal with processor hierarchies?
= How do we allocate data to parallel hardware?

= What are the best parallel patterns to use

= and what are the best implementations of those patterns?
= do we need to alter patterns to include energy etc??

= How can we find instances of patterns in code?

= How do we find the best mapping to heterogeneous processors?

AT N LA IBARA PHRASE (| T A N[FLEC A0

Conclusions (2)

Univefrsity
Ol
St Andrews

= Functional programming makes it easy to introduce parallelism
= No side effects means any computation could be parallel
= Matches pattern-based parallelism
= Much detail can be abstracted

= Lots of problems can be avoided

= e.g. Freedom from Deadlock
= Parallel programs give the same results as sequential ones!

= Automation is very important

= Refactoring dramatically reduces development time
(while keeping the programmer in the loop)

= Machine learning is very promising for determining complex performance settings

AT N LA IBARA PHRASE (| T A N[FLEC A0

Some of our Industrial Connections

Erlang Solutions Ltd

IBM

EvoPro Innovation

PRQA Programming Research
Roke Manor

SAP GmbH, Karlsriihe

BAe Systems

Selex Galileo

Biold GmbH, Stuttgart

Philips Healthcare

Software Competence Centre, Hagenberg

Microsoft Research
Well-Typed LLC
Mellanox Inc.

Univefrsity
Ol
St Andrews

SOLUTIONS

software competence center
nnnnnnnnn

kel PHILIPS

Part of the
Chemring Group

A,
"/ SELEX GALILED

- possibl
evopro

PROA E&8Well-Typed

The Haskell Consultants

o000
o000
o000
® ® ® ® Programming Research

BIOID" Microsoft Research

be recognized

Mellanox

TECHNOLOGIES

BAE SYSTEMS

B

94

Rampai -L'mbda-Men in St Andrews I

TN LA IPARAPHE

= C++11/14 has lambda functions (and some other nice functional-
inspired features)

= C++17 will add parallelism as well as concurrency
= Java 8 has lambda and futures
= Swift has first-class functions (and can support futures)

= |ntegrated into Eclipse
= Supports full C++(11) standard

= Uses strongly hygienic components
= functional encapsulation (closures)

= Transfers our functional ideas to C++

Further Reading

Univefrsity
Ol
St Andrews

Chris Brown. Marco Danelutto, Kevin Hammond, Peter Kilpatrick and Sam Elliot
“Cost-Directed Refactoring for Parallel Erlang Programs”
To appear in International Journal of Parallel Programming, 2014

John McCall, Mehdi Goli, Vladimir Janjic, Chris Brown and Kevin Hammond
“Using Machine Learning to Derive Mappings for Heterogeneous Parallel Computations”

2013 IEEE Congress on Evolutionary Computing.

olfgang Loidl and Kevin Hammond
lel Haskell Programs using Novel Refactoring Techniques”

ogramming (TFP), Madrid, Spain, May 2011

Ask me for copies!

ladimir Janjic and Kevin Hammond
ion Replay for Parallel Haskell Programs”
Functional Programming (TFP), St Andrews, UK, June 2012

free for download!

Funded by

Univefrsity
Ol
St Andrews

* RePhrase (EU H2020), Refactoring Parallel Heterogeneous Software
— a Software Engineering Approach,

= €3.5M, 2015-2018

* ParaPhrase (EU FP7), Patterns for heterogeneous multicore, S|C]1|E INJCIE

e Symbolic _
= €4.2M, 2011-2014 %X Computation
~, Infrastructure for

e SCIEnce (EU FP6), Grid/Cloud/Multicore coordination
e €£3.2M, 2005-2012

* Advance (EU FP7), Multicore streaming
e €2.7M, 2010-2013

StatArch

- ADVANCE
]
=

. HPC-GAP (EPSRC), Legacy system on thousands of cores “‘S i C S a*
* f1.6M, 2010-2014 of

* TACLE: European Cost Action on Timing Analysis

* €300K, 2014-2017 ’ 7 . .
(' cEDEt EPS RC 'SEVENTH FRAMEWORK

PROGRAMME

AT N LA IBARA PHRASE (| T A N[RLEL 4008

Um'vefrsity = —
St Andrews SEVEFl;lRTgGFg:MM nﬁ\éVORK

RePhrase Project:Refactoring Parallel Heterogeneous Software
— a Software Engineering Approach (ICT-644235), 2015-2018, €3.5M budget

8 Partners, 6 European countries
UK, Spain, Italy, Austria, Hungary, Israel

Coordinated by @khstandrews

- o
evopro

UNIVERSITA
DEGLI STUDI F o
DITORING [af e

ALMAUNIVERGITAS ohinten
TRURINENSIS 2

232PRQA s cch

® ® ® ® Programming Rescarch sofiware competende canier :
hagenberg UNIVERSTTA DI PISA

ParaPhrase Needs You!

Univefrsity
Ol
St Andrews

* Please join our mailing list

and help grow our user community
" news items

access to free development software
= chat to the developers

= free developer workshops

= bug tracking and fixing

= Tools for both Erlang and C++

e Subscribe at

https://mailman.cs.st-andrews.ac.uk/mailman/
listinfo/paraphrase-news

 We're also looking for open source
developers...

p ‘IL

OO

Univefrsity
St Andrews

THANK YOU'!

http://www.rephrase-ict.eu

http://www.paraphrase-ict.eu

http://www.project-advance.eu

@paraphrase _fp7, @rephrase_eu

kh@cs.st-andrews.ac.uk, kevin@kevinhammond.net

