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“"A DISTRIBUTED SYSTEM 1IS
ONE IN WHICH THE FAILURE
OF A COMPUTER YOU DID NOT
EVEN KNOW EXISTED CAN
RENDER YOUR OWN
COMPUTER UNUSABLE"

Leslie Lamport
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Service Unavailable - DNS failure

The server is temporarily unable to service your request. Please try again later.

*) www.facebook.com

Reference #11.346f1160.1285269814 4c7b3c81

If you're currently writing us an email to tip us that Facebook is down, you can stop —
we've gotten a few hundred of those in the past few minutes. Yes, Facebook appears to
be down at the moment. I'm currently getting a DNS failure message (above), others are
apparently seeing other things. (Update: I'm told that DNS message is actually an Akamai
server error.)

This is a problem not just because the site is down, but Facebook’s omnipresent Like

&l autoricardoch

BMW R 1200
GS Adventure
ABS

CHF 10500

BMW R-Serie YAMAHA SR
R80 G/S 500

CHF 5’500 CHF 5'500

TL- NEWSLETTERS

v TechCrunch Daily Top headlines,
delivered daily

v/ TC Week-in-Review Most popular
stories, delivered Sundays

v CrunchBase Daily Latest startup
fundings, delivered daily




Search ) is github down

Y migs @

| think glthub is down (at least via
192.30.252.128. 192.30.252.129 is
working for me)

LTy WY
s GRMUb down or st me? Dian't 500 a0y Satus VDMt Som

Jared Besnett
3 Sown?
Q Lec McArsie

Ripgstime orn sown?

Leon Amarant @amarant
githubstatus i think github is down?

' Larry Lv @amyh
, ﬂ’ Is GitHub down or just me? Didn’t
see any status update from

githubstatus

Jared Bennett @mab
Is @github down?

Leo McArdle @l coMcArdie
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Google: define jargon

jar-gon
/'jargen/

special words or expressions that are used by a particular profession or group and are
difficult for others to understand.

"legal jargon”

synonyms: specialized language, slang, cant, idiom, argot, patter, More

« a form of language regarded as barbarous, debased, or hybrid.

Translations, word origin, and more definitions
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Impossibility of Distributed Consensus with One Faulty Process!

Michael J Fischer

Yale University
New Haven, Connecticut

Abstract

The consensus problem involves an
asynchronous system of processes, some of
which may be unreliable The problem s for
the rehable processes to agree on a bmary
value We show that every protocol for this
problem has the possibility of nontermination,
even with only one faulty process By way of
contrast, solutions are known for the
synchronous case, the “Byzantine Generals”
problem

Nancy A Lynch

Massachusetts Institute of Technology®
Cambndge, Massachusetts

Michael S Paterson

University of Warwick
Coventry, England

A welkknown form of the problem 1s the
“transaction commit problem™ which anses m
distributed database systems [DS1, G, LS, La, Le,
Ly, R, RLS, S, SS| The problem 1s for all the data
manager processes which bave participated m the
processing of a particular transaction to agree on
whether to install the transaction's results in the
database or to discard them  The latter action
might be necessary, for example, if some data
managers were for any reason unable to carry out
the required transaction processing Whatever
decision 1s made, all data managers must make the
same decision m order to preserve the consistency of
the database
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 The Part-Time Parliament

value We show that every protocol for this
problem has the possibility of nontermination,
even with only one faulty process By way of

LESLIE LAMPORT
Digital Equipment Corporation

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned
despite the peripatetic propensity of its part-time legislators. The legislators maintained
consistent copies of the parliamentary record, despite their frequent forays from the chamber
and the forgetfulness of their messengers. The Paxon parliament’s protocol provides a new
way of implementing the state machine approach to the design of distributed systems.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—network operating systems; D.4.5 [Operating Systems]: Reliability—fault-
tolerance; J.1 [Computer Applications]: Administrative Data Processing—government

General Terms: Design, Reliability

Additional Key Words and Phrases: State machines, three-phase commit, voting
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Time, Clocks, and th
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

~ The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systems,
computer networks, clock synchronization, multiprocess
systems

CR Categories: 4.32, 5.29

This is a short overview of a totally ordered broadcast pro-
tocol used by ZooKeeper, called Zab.
easy to understand, is easy to implement, and gives high
performance.
ZooKeeper makes on Zab, we show how the protocol is used,
and we give an overview of how the protocol works.

It is conceptually

In this paper we present the requirements
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chines providing the service and always has a consistent view
of the ZooKeeper state. The service tolerates up to f crash
failures, and it requires at least 2f + 1 servers.
Applications use ZooKeeper extensively and have tens
to thousands of clients accessing it concurrently, so we re-
quire high throughput. We have designed ZooKeeper for
workloads with ratios of read to write operations that are
higher than 2:1; however, we have found that ZooKeeper's
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Raft is a consensus algorithm for managing a replicated

a DiStribulog It produces a result equivalent to Paxos, and it is

as efficient as Paxos, but its structure is different from

. Paxos; this makes Raft more understandable than Paxos
Leslie LamPOﬂ and also provides a better foundation for building practi-
Massachusetts Com] cal systems. In order to enhance understandability, Raft
separates the key elements of consensus, such as leader
election and log replication, and it enforces a stronger de-
gree of coherency to reduce the number of states that must
The concept of one {be considered. Raft also includes a new mechanism for

in a distributed system i changing the cluster membership, which uses overlapping
define a partial ordering majorities to guarantee safety. Results from a user study
algorithm is given for sy demonstrate that Raft is casier for students to learn than

clmks which can bc us&Puog;‘"--J R W WEAT W T WERRATY

In Search of an Understandable Consensus Algor‘i'thm'

Diego Ongaro and John Ousterhout
Stanford University
(Draft of May 22, 2013; under submission)
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Yahoo! Research
Santa Clara, CA - USA

breedQ@yahoo-inc.com
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was our most important criterion in evaluating de-
sign alternatives. We applied specific techniques to
improve understandability, including decomposition
(Raft separates leader election, log replication, and
safety so that they can be understood relatively in-
dependently) and state space reduction (Raft reduces
the degree of nondeterminism and the ways servers
can be inconsistent with each other, in order to make
it easier to reason about the system).

Strong leader: Raft differs from other consensus al-
gorithms in that it employs a strong form of leader-
ship where only leaders (or would-be leaders) issue
requests; other servers are completely passive. This
makes Raft easier to understand and also simplifies
the implementation.

A simple totally ordered broadcast protocol
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fpj@yahoo-inc.com

~rvice and always has a consistent view

¢. The service tolerates up to f crash
s at least 2f + 1 servers.

ooKeeper extensively and have tens
'$ accessing it concurrently, so0 we re-
t. We have designed ZooKeeper for
i of read to write operations that are
wer, we have found that ZooKeeper's

The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systems,
computer networks, clock synchronization, multiprocess
systems

CR Categories: 4.32, 5.29

€010gICal UISCOVEries On une 1s1ana o1 raxos reveal unav une parliament functioned
peripatetic propensity of its part-time legislators. The legislators maintained
pies of the parliamentary record, despite their frequent forays from the chamber
etfulness of their messengers. The Paxon parliament’s protocol provides a new
menting the state machine approach to the design of distributed systems.

nd Subject Descriptors: C.2.4 [Computer-Communication Networks|: Distrib-
s—network operating systems; D.4.5 [Operating Systems): Reliability—fault-
. [Computer Applications|: Administrative Data Processing—government

ns: Design, Reliability

Aaaiuonal sey Words and Phrases: State machines, three-phase commit, voting




WHICH BOOKS?



mm?@v:_ﬁmm Algdorithms

g

Raynal Concurrent Programming: Algorithms,
4z Principles, and Foundations
Raynal @_ Distributed Algorithms for Message-Passing Systems

1
4 A

Cachin - Guerraoui _ Introduction to Reliable and
Rodrigues @ Secure Distributed Programming

?.m‘

Charron-Bost * Pedone s g
Schiper (Eds.) @_ =3 Replication

LLSAS INLL-TVIY INVITTOL-LINVA

"
.

> e . - " G
\d | ' R Al 1 Y1 r .\9._ - ,.ﬂ\.. -...r.. ....A...‘
e, Birman _ : CU DYSLEMS
y o 0 & W e e St / y
) » & - pg Po
. Cy i 08
P

REPLICATION TECHNIQUES IN DISTRIBUTED SYSTEMS

Helal/Heddas o Bhargava

SN

T T
*UB-980-387*

VUKOLIC QUORUM SYSTEMS MORGAN & CLAY POOI
RAYNAI FAULT-TOLERANT AGREEMENT IN SYNCHRONOUS MESSAGE-PASSING SYSTEMS MORGAN&CLAYPOOL

RAYNAI COMMUNICATION AND AGREEMENT ABSTRACTIONS FOR FAULT-TOLERANT
ASYNCHRONOUS DISTRIBUTED SYSTEMS

I:l:;-,n{ud

MORGAN&CLAYPOOL

_:/__/.__.._f__:A:/:___:/.? Lrvags \ OMBINATORIA] __::::.;,_

s

Shavit

THE ART )/ MULTIPROCESSOR PROGRAMMING

3

vV

T —— >
" =

I‘[c‘l'[ihl'

Programming Distributed Computing Systems






HEDFUK
D@M+Javascrip

http://tobielangel.com



http://tobielangel.com

THE PROBLEM



DIFFERENT MODELS



DIFFERENT MODELS

« Timing Model



DIFFERENT MODELS

« Timing Model

o Inter Process Communication Used (IPC
method)



DIFFERENT MODELS

« Timing Model

o Inter Process Communication Used (IPC
method)

e Failure Modes
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 Synchronous Model
 Asynchronous Model

« Semi-synchronous Model
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e Message Passing



INTERPROCESS
COMMUNICATION

e Message Passing

e Shared Memory
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FAILURE MODES

 Crash-stop
 Crash-recovery
 Omission Faults

 Arbitrary Failures Mode (Byzantine)
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LIVENESS AND SAFETY
PROPERTIES OF ALGORITHMS

DEFINING LIVENESS *

Bowen ALPERN and Fred B. SCHNEIDER
Department of Computer Science, Cornell University, 405 Upson Hall, Ithaca, NY 14853, U.S.A.

Communicated by David Gries
Received 5 November 1984
Revised 20 February 1985

A formal definition for liveness properties is proposed. It is argued that this definition captures the intuition that liveness
properties stipulate that ‘something good’ eventually happens during execution. A topological characterization of safety and
liveness is given. Every property is shown to be the intersection of a safety property and a liveness property.




SAFETY

Some "bad” thing does not
happens during execution



SAFETY

“"Communication links should not
invent messages out of thin air”



LIVENESS

A “good” thing happens during
execution



LIVENESS

“A destination process eventually
delivers the message”



LET’S TAKE A LOOK
AT FLP’

1 - Fischer, Lynch, Paterson



Impossibility of Distributed Consensus with One Faulty Process!

Michael J Fischer

Yale University
New Haven, Connecticut

Abstract

The consensus problem nvolves an
asynchronous system of processes, some of
which may be unreliable The problem 1s for
the rehable processes to agree on a binary
value We show that every protocol for this
problem has the possibility of nontermination,
even with only one faulty process By way of
contrast, solutions are known for the
synchronous case, the “Byzantine Generals”
problem

Nancy A Lynch

Massachusetts Institute of Technology®
Cambndge, Massachusetts

Michael S Paterson

University of Warwick
Coventry, England

A welkknown form of the problem 1s the
“transaction commit problem” which arnses in
distributed database systems [DS1, G, LS, La, Le,
Ly, R, RLS, S, SS| The problem 1s for all the data
manager processes which have participated mn the
processing of a particular transaction to agree on
whether to install the transaction’s results in the
database or to discard them The latter action
might be necessary, for example, if some data
managers were for any reason unable to carry out
the required transaction processing Whatever
decision 18 made, all data managers must make the
same decision 1n order to preserve the consistency of
the database




IMPOSSIBILITY OF DISTRIBUTED
CONSENSUS WITH ONE FAULTY
PROCESS

In this paper, we show the surprising result that

no completely asynchronous consensus protocol can
tolerate even a single unannounced process death

We do not consider Byzantine failures, and we
assume that the message system 18 rehable — 1t
delivers all messages correctly and exactly once




IMPOSSIBILITY OF DISTRIBUTED
CONSENSUS WITH ONE FAULTY
PROCESS

Nevertheless, even with these assumptions, the
stopping of a single process at an mmopportune time
can cause any distributed commit protocol to fail to

reach agreement Thus, this important problem has
no robust solution without further assumptions

about the computing environment or still greater
restrictions on the kind of failures to be tolerated!




IMPOSSIBILITY OF DISTRIBUTED
CONSENSUS WITH ONE FAULTY
PROCESS

Crucial to our proof 1s that processing is
completely asynchronous, that 15, we make no
assumptions about the relative speeds of processes
nor about the delay time in delivering a message
We also assume that processes do not have access to
synchronized clocks, so algonithms based on

timeouts, for example, cannot be used (In
particular, the solutions mn [DS1] are not applicable )
Finally, we do not postulate the ability to detect the
death of a process, so it 18 impossible for one process
to tell whether another has died (stopped entirely)
or 18 Just running very slowly




IMPOSSIBILITY OF DISTRIBUTED
CONSENSUS WITH ONE FAULTY
PROCESS

Our system model 18 rather strong so as to make
our mmpossibiity proof as wudely applicable as
possible Processes are modelled as automata (with
possibly infinitely many states) which communicate
by means of messages In one atomic step, a process
can attempt to receive a message, perform local
computation based on whether or not a message was

delivered to it and if so on which one, and send an
arbitrary but fimte set of messages to other
processes In particular, an “atomic broadcast”
capability 1s assumed, so a process can send the
same message in one step to all other processes with
the knowledge that if any nonfaulty process receives
the message, then all the nonfaulty processes will




IMPOSSIBILITY OF DISTRIBUTED
CONSENSUS WITH ONE FAULTY
PROCESS

Every message is eventually delivered as long as the
destination process makes nfinitely many attempts

to receive, but messages can be delayed arbitranly
long and delivered out of order




WHAT'S CONSENSUS
ANYWAY?




"THE CONSENSUS
PROBLEM IS A PARADIGM
OF AGREEMENT
PROBLEMS”

https://dl.acm.org/citation.cfm?id=1052796.1052806
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« C-Termination: Every correct process eventually decides on some value



PROPERTIES OF UNIFORM
CONSENSUS

« C-Termination: Every correct process eventually decides on some value

« C-Validity: If a process decides v, then v was proposed by some process



PROPERTIES OF UNIFORM
CONSENSUS

« C-Termination: Every correct process eventually decides on some value

« C-Validity: If a process decides v, then v was proposed by some process

« C-Agreement: No two correct processes decide differently



PROPERTIES OF UNIFORM
CONSENSUS

« C-Termination: Every correct process eventually decides on some value

« C-Validity: If a process decides v, then v was proposed by some process

« C-Agreement: No two correct processes decide differently

« C-Uniform Agreement: No two processes (correct or not) decide

differently.
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HAVE TO AGREE TO TAKE
A COMMON ACTION
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Broadcast




WE NEED CONSENSUS
WHEN:

A SET OF PROCESSES
HAVE TO AGREE TO TAKE
A COMMON ACTION

Atomic Group
Broadcast Membership




ATOMIC BROADCAST

"CORRECT PROCESSES
DELIVER THE SAME SET OF
MESSAGES IN THE SAME
ORDER"



FLP TELLS US THAT IF
CONSENSUS CANNOT BE
ACHIEVED, THEN ATOMIC
BROADCAST OR GROUP
MEMBERSHIP CANNOT BE
ACHIEVED EITHER




SO, WE PACK OUR BAGS
AND GO?

NOTHING TO SEE HERE?



STUMBLING OVER
CONSENSUS RESEARCH:

MISUNDERSTANDING AND
ISSUES

Marcos K. Aguilera
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DETECTORS



Unreliable Failure Detectors for Reliable
Distributed Systems

TUSHAR DEEPAK CHANDRA

[.B.M. Thomas J. Warson Research Center, Hawthorme, New York
AND
SAM TOUEG

Cornell University, Ithaca, New York

We introduce the concept of unreliable failure detectors and study how they can be used to solve
Consensus in asynchronous systems with crash failures. We characterise unreliable failure detectors
in terms of two properties—completeness and accuracy. We show that Consensus can be solved even
with vnreliable failure detectors that make an infinite number of mistakes, and determine which ones
can be vsed to solve Consensus despite any number of crashes, and which ones require a majority of
correct processes. We prove that Consensus and Atomic Broadcast are reducible to each other in
asynchronous systems with crash failures; thus, the above results also apply to Atomic Broadcast. A
companion paper shows that one of the failure detectors introduced here is the weakest failure
detector for solving Consensus [Chandra et al. 1992].




FAILURE DETECTORS



FAILURE DETECTORS

 External process



FAILURE DETECTORS

 External process

 Provides information about suspected processes



FAILURE DETECTORS

 External process

 Provides information about suspected processes

« Completeness property (crashed processes are
detected)



FAILURE DETECTORS

 External process
 Provides information about suspected processes

« Completeness property (crashed processes are
detected)

e Accuracy (correct process are never suspected)



"RUB SOME PERFECT
FAILURE DETECTOR
ON IT"



PERFECT FAILURE
DETECTOR

Module 2.6: Interface and properties of the perfect failure detector
Module:

Name: PerfectFailureDetector, instance P.

Events:

Indication: ( P, Crash | p ): Detects that process p has crashed.

Properties:

PFD1: Strong completeness: Eventually, every process that crashes is permanently
detected by every correct process.

PFD2: Strong accuracy: If a process p is detected by any process, then p has
crashed.

http://www.amazon.com/Introduction-Reliable-Secure-
Distributed-Programming/dp/3642152597



EVENTUALLY ACCURATE
FAILURE DETECTOR




EVENTUALLY ACCURATE
FAILURE DETECTOR

« Strong Completeness: Eventually, every
process that crashes is permanently
suspected by every correct process.
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« Strong Completeness: Eventually, every
process that crashes is permanently
suspected by every correct process.

« Eventual Weak Accuracy: There is a time
after which some correct process is never
suspected by the correct processes.



EVENTUALLY ACCURATE
FAILURE DETECTOR

« Strong Completeness: Eventually, every
process that crashes is permanently
suspected by every correct process.

« Eventual Weak Accuracy: There is a time
after which some correct process is never
suspected by the correct processes.

http://dl.acm.org/citation.cfm?id=1052806



Unreliable Failure Detectors for Reliable
Distributed Systems

TUSHAR DEEPAK CHANDRA

[.B.M. Thomas J. Wartson Research Center, Hawthome, New York
AND
SAM TOUEG

Cornell University, Ithaca, New York

We introduce the concept of unreliable failure detectors and study how they can be used to solve
Consensus in asynchronous systems with crash failures. We characterise unreliable failure detectors
in terms of two properties—completeness and accuracy. We show that Consensus can be solved even
with unreliable failure detectors that make an infinite number of mistakes, and determine which ones
can be vsed to solve Consensus despite any number of crashes, and which ones require a majority of
correct processes. We prove that Consensus and Atomic Broadcast are reducible to each other in
asynchronous systems with crash failures; thus, the above results also apply to Atomic Broadcast. A
companion paper shows that one of the failure detectors introduced here is the weakest failure
detector for solving Consensus [Chandra et al. 1992].







TL;DR:

INTERSECTING
SETS




QUORUMS

“"A QUORUM IN A SYSTEM WITH N
CRASH-FAULT PROCESS ABSTRACTIONS
[...] IS ANY MAJORITY OF
PROCESSES, I.E., ANY SET OF MORE
THAN N/2 PROCESSES”



QUORUMS

“IF F < N/2 PROCESSES FAIL BY
CRASHING, THERE IS ALWAYS AT
LEAST ONE QUORUM OF
NONCRASHED PROCESSES IN SUCH
SYSTEMS”



CONSISTENCY




Linearizability: A Correctness Condition for
Concurrent Objects

MAURICE P. HERLIHY and JEANNETTE M. WING
Carnegie Mellon University

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects
using known techniques from the sequential domain. Linearizability provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness
conditions, presents and demonstrates a method for proving the correctness of implementations, and
shows how to reason about concurrent objects, given they are linearizable.




CONCURRENT
FIFO QUEUE
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