
Deploying an Erlang System | Public | 2015-06-01 | Page 1

DePloying an
embedded ERLANG
System

A case example

Deploying an Erlang System | Public | 2015-06-01 | Page 2

Content

 What are Autotools and why use them?

 What is Yocto/Bitbake and why use it?

 A case example using Yocto/Bitbake to deploy an Erlang
system

 Why is it difficult to deploy an Erlang system?

 How can we make it easy to deploy an Erlang system?

Deploying an Erlang System | Public | 2015-06-01 | Page 3

What are Autotools?

 The GNU Build System

– designed to assist in making source code packages portable to many
Unix-like systems

 Components:

– GNU Autoconf

– GNU Automake

– GNU Libtool

– Gnulib

http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/Autoconf
http://en.wikipedia.org/wiki/Automake
http://en.wikipedia.org/wiki/GNU_Libtool
http://en.wikipedia.org/wiki/Gnulib

Deploying an Erlang System | Public | 2015-06-01 | Page 4

Why use Autotools?

 Your code will be portable and easy to deploy on any Unix-like
system

– Without any extra effort on the users of user code

 Autotools adhere to the GNU Coding Standards

– It is easy to make your code distributable
● make dist, make distcheck

– It is easy for others to build an install your distributed code
● ./configure & make & make install

– and so on ...

http://en.wikipedia.org/wiki/GNU_coding_standards

Deploying an Erlang System | Public | 2015-06-01 | Page 5

What is Yocto/Bitbake?

 Yocto is an open source collaboration project with:

– templates, tools and methods for creating embedded linux products
regardless of hardware architecture

 Bitbake is a generic task execution engine that:

– allows shell and Python tasks to be run efficiently and in parallel while
working within complex inter-task dependency constraints

Metadata

sources

Yocto/Bitbake

Packages

Images

Deploying an Erlang System | Public | 2015-06-01 | Page 6

Build System

The Yocto/bitbake Flow

Metadata

Upsteam
Sources

Fetch Sources

Patching

Configuration

Build

Install

QA
Tests

RPM
Generation

Package
Splitting

Image
Generation

Package
Feeds

Images

Metalayer

Metalayer
.conf, configuration files
.bbclass, class files
.bb, recipe files
.bbappend, recipe “adjust” files

autotools, cm
ake, ...

Deploying an Erlang System | Public | 2015-06-01 | Page 7

Why use Yocto/Bitbake?

 You want to deploy a customized embedded linux system

– Other tools are available for server linux systems, chef, puppet, ...

 You want to automate the production of images and packages

– Reproduceable, efficient system level builds

 You want to be able to deploy images and packages on multiple
hardware architectures

Deploying an Erlang System | Public | 2015-06-01 | Page 8

A case example, “Hello”

 A system that periodically writes “Hello” to log file, /tmp/hello.log

 Minimal code that adheres to the OTP Design Principles

 Minimal deployment of files on target images

 Bourne shell scripts for bootstrapping this Erlang system with
the Linux init system (System V)

– Embedded Systems User Guide

http://www.erlang.org/doc/design_principles/users_guide.html
http://www.erlang.org/doc/embedded/embedded_solaris.html

Deploying an Erlang System | Public | 2015-06-01 | Page 9

Yocto Metalayers

Custom Metalayer

Bitbake Metalayers

Poky Build System
meta

meta-yocto

meta-yocto-bsp

meta-hello

meta-raspberrypi

meta-erlang

https://github.com/egcrowe/meta-hello.git

Build instructions
in README

https://github.com/egcrowe/meta-hello.git

Deploying an Erlang System | Public | 2015-06-01 | Page 10

164 files deployed on
image

/usr/lib/erlang/erts-6.4/bin

epmd

erl

run_erl

start.boot

/usr/lib/erlang/lib/kernel-3.2/ebin

/usr/lib/erlang/lib/stdlib-2.4/ebin

/usr/lib/erlang/lib/hello-0.1/ebin/etc/rc3.d/S75hello.otp.system

/etc/init.d/hello.otp.system

/etc/hello.d/hello.boot

/etc/hello.d/hello.config

/usr/bin/hello.start

/usr/bin/hello.stop

Softlink made
by update-rc.d

Key
Softlink
Bourne shell script
ELF

Uses

to_erl

erlexec

inet_gethost

beam

hello.app *.beam

kernel.app *.beam

stdlib.app *.beam

Deploying an Erlang System | Public | 2015-06-01 | Page 11

Erlang/OTP Insights

 Erlang/OTP packaging is monolithic

– No distinction between runtime system, libraries, tools and applications

 Erlang/OTP is not autotools compliant

– This explains why Erlang/OTP is not as ubiquitous as it ought to be

 These root problems propagate down the chain

– Meta-erlang is more complex due to Erlang/OTP being monolithic and
non-Autotools compliant

Deploying an Erlang System | Public | 2015-06-01 | Page 12

Meta-Erlang Insights

 João Henrique Ferreira de Freitas has made a great
contribution

 The monolithic Erlang/OTP is split into smaller packages

– The erlang package depends on erlang-erts, erlang-stdlib, erlang-kernel
and erlang-sasl

– However the contents of the erlang and erlang-erts packages are wrong
in my opinion

 There are cross compiling workarounds to solve the non-
autotools compliance problem

 Includes tools widely used in the Erlang community

– rebar, relx, erlinit, ...

Deploying an Erlang System | Public | 2015-06-01 | Page 13

Autoconf Insights

 Romain Lenglet gave a EUC presentation in 2006 about new
Erlang specific autoconf macros

 These are very useful

 I always use these macros for any Erlang code I now write

 These have helped me considerably and I have had no issues,
until I started using bitbake

– Unfortunately not all Erlang specific autoconf macros are “cross-compile”
safe

Deploying an Erlang System | Public | 2015-06-01 | Page 14

Automake Insights

 Erlang code is often enhanced with C code

 Autotools provides support for packaging C code for portability
across Unix-like systems

 Automake ensures the build system adheres to the GNU
Coding Standards

 For these reasons it is worth using Automake for Erlang code

 It is possible to write Makefile.am files for Erlang code

 However it can be tricky for beginners

Deploying an Erlang System | Public | 2015-06-01 | Page 15

Simplification Roadmap

 Unravel the Erlang/OTP monolith

– Enabler for simplifying meta-erlang Yocto metalayer

 Document recommended packaging and distribution practices

 Fix broken Erlang autoconf macros that are not cross compile
safe

 Fix meta-erlang Yocto metalayer package splitting (erlang &
erlang-erts)

 Design and implement automake primaries for erlang

 ...

Deploying an Erlang System | Public | 2015-06-01 | Page 16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

