ERICSSON

DeEPLOYING AN
cMBeDDeD eRLANG
SYSTeM

A case example

CONTENT

= What are Autotools and why use them?
= What is Yocto/Bitbake and why use it?

= A case example using Yocto/Bitbake to deploy an Erlang
system

= Why is it difficult to deploy an Erlang system?

= How can we make it easy to deploy an Erlang system?

Deploying an Erlang System | Public | 2015-06-01 | Page 2

\\

WHAT ARE AUTOTOOLS?

= The GNU Build System

- designed to assist in making source code packages portable to many
Unix-like systems

= Components:

- GNU Autoconf
- GNU Automake
- GNU Libtool

- Gnulib

Deploying an Erlang System | Public | 2015-06-01 | Page 3

\\

http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/Autoconf
http://en.wikipedia.org/wiki/Automake
http://en.wikipedia.org/wiki/GNU_Libtool
http://en.wikipedia.org/wiki/Gnulib

WHY USe AUTOTOOLS?

\\

= Your code will be portable and easy to deploy on any Unix-like
system

- Without any extra effort on the users of user code
= Autotools adhere to the GNU Coding Standards

- Itis easy to make your code distributable
make dist, make distcheck

- It is easy for others to build an install your distributed code
Jconfigure & make & make install

- andsoon...

Deploying an Erlang System | Public | 2015-06-01 | Page 4

http://en.wikipedia.org/wiki/GNU_coding_standards

WHAT IS YOCTO/BITBAKE?

\\

= Yocto is an open source collaboration project with:

- templates, tools and methods for creating embedded linux products
regardless of hardware architecture

= Bitbake is a generic task execution engine that:

- allows shell and Python tasks to be run efficiently and in parallel while
working within complex inter-task dependency constraints

>-

=

Metadata

™ |mages

Deploying an Erlang System | Public | 2015-06-01 | Page 5

THE YOCTO/BITBAKE FLOW

\\

Upsteam
Sources

Metadata
Metalayer

RPM Image
Generation Generation
Package
Splitting

. Configuration

Metalayer
.conf, configuration files
.bbclass, class files

.bb, recipe files

.bbappend, recipe “adjust” files

Deploying an Erlang System | Public | 2015-06-01 | Page 6

WHY USE YOCTO/BITBAKE?

\\

= You want to deploy a customized embedded linux system
- Other tools are available for server linux systems, chef, puppet, ...

= You want to automate the production of images and packages
- Reproduceable, efficient system level builds

= You want to be able to deploy images and packages on multiple
hardware architectures

Deploying an Erlang System | Public | 2015-06-01 | Page 7

A CASE e XAMPLE, "HeLLO” :":

= A system that periodically writes “Hello” to log file, /tmp/hello.log
= Minimal code that adheres to the OTP Design Principles
= Minimal deployment of files on target images

= Bourne shell scripts for bootstrapping this Erlang system with
the Linux init system (System V)

- Embedded Systems User Guide

Deploying an Erlang System | Public | 2015-06-01 | Page 8

http://www.erlang.org/doc/design_principles/users_guide.html
http://www.erlang.org/doc/embedded/embedded_solaris.html

BITBAK:

METALAYERS

https://github.com/egcrowe/meta-hello.git N

meta-hello Build instructions
in README

\\

meta-erlang
meta-raspberrypi

meta-yocto-bsp

meta-yocto
meta

Deploying an Erlang System | Public | 2015-06-01 | Page 9

https://github.com/egcrowe/meta-hello.git

164
IMAGE

—c
C

|

Key
Softlink

ELF

Bourne shell script

DePLOYED ON

.1-» /etc/hello.d/hello.boot
J-» /etc/hello.d/hello.config

/etc/rc3.d/S75hello.otp.system

/etc/init.d/hello.otp.system

4_-

~
Y
~

.
="

Softlink made

by update-rc.d

‘5

<
h..
Sen.

A 4

r-- /usr/bin/hello.start
/usr/bin/hello.stop =---

-
S~

Seo
~ e

I

/usr/lib/erlang/lib/kernel-3.2/ebin
kernel.app *.beam

/usr/lib/erlang/lib/stdlib-2.4/ebin

i stdlib.app *.beam

lusr/lib/erlang/lib/hello-0.1/ebin

“» hello.app * beam

/usr/lib/erlang/erts-6.4/bin

epmd to_erl
---» erl erlexec
t===%» run_erl inet gethost_)
----» start.boot -------ct
beam

-
———'

<4-f.

‘-_..
~

.
e

-~ -
-

o
-
- -

-

Deploying an Erlang System | Public | 2015-06-01 | Page 10

CRLANG/OTP INSIGHTS

\\

= Erlang/OTP packaging is monolithic

- No distinction between runtime system, libraries, tools and applications
= Erlang/OTP is not autotools compliant

— This explains why Erlang/OTP is not as ubiquitous as it ought to be
= These root problems propagate down the chain

- Meta-erlang is more complex due to Erlang/OTP being monolithic and
non-Autotools compliant

Deploying an Erlang System | Public | 2015-06-01 | Page 11

META-ERLANG INSIGHTS

\\

= Joao Henrique Ferreira de Freitas has made a great
contribution

= The monolithic Erlang/OTP is split into smaller packages

- The erlang package depends on erlang-erts, erlang-stdlib, erlang-kernel
and erlang-sasl

- However the contents of the erlang and erlang-erts packages are wrong
iIn My opinion

= There are cross compiling workarounds to solve the non-
autotools compliance problem

= Includes tools widely used in the Erlang community

- rebar, relx, erlinit, ...

Deploying an Erlang System | Public | 2015-06-01 | Page 12

AUTOCONF INSIGHTS

\\

= Romain Lenglet gave a EUC presentation in 2006 about new
Erlang specific autoconf macros

= These are very useful
= | always use these macros for any Erlang code | now write

= These have helped me considerably and | have had no issues,
until | started using bitbake

- Unfortunately not all Erlang specific autoconf macros are “cross-compile”
safe

Deploying an Erlang System | Public | 2015-06-01 | Page 13

AUTOMAKE INSIGHTS

\\

= Erlang code is often enhanced with C code

= Autotools provides support for packaging C code for portability
across Unix-like systems

= Automake ensures the build system adheres to the GNU
Coding Standards

= For these reasons it is worth using Automake for Erlang code
= |t is possible to write Makefile.am files for Erlang code

= However it can be tricky for beginners

Deploying an Erlang System | Public | 2015-06-01 | Page 14

SIMPLIFICATION ROADMAP

\\

= Unravel the Erlang/OTP monolith
- Enabler for simplifying meta-erlang Yocto metalayer

= Document recommended packaging and distribution practices

= Fix broken Erlang autoconf macros that are not cross compile
safe

= Fix meta-erlang Yocto metalayer package splitting (erlang &
erlang-erts)

= Design and implement automake primaries for erlang

Deploying an Erlang System | Public | 2015-06-01 | Page 15

ERICSSON

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

