elixir

@elixirlang / elixir-lang.org

It is not about
the syntax!

Processes

Tooling

No custom data types

Records aimed to add tagged tuples
but the implementation backfired
Maps are an improvement (imo)

but do not officialise "tagging

How to make ad-hoc polymorphism less ad hoc

Philip Wadler and Stephen Blott

University of Glasgow™

October 1988

Abstract

This paper presents type classes, a new approach
to ad-hoc polymorphism. Type classes permit over-
loading of arithmetic operators such as multiplica-
tion, and generalise the “eqtype variables” of Stan-
dard ML. Type classes extend the Hindley/Milner
polymorphic type system, and provide a new ap-
proach to issues that arise in object-oriented pro-
gramming, bounded type quantification, and ab-
stract data types. This paper provides an informal
introduction to type classes, and defines them for-

—_— . . _#a P . 1 _

integers and a list of floating point numbers.

One widely accepted approach to parametric
polymorphism is the Hindley/Milner type system
[Hin69, Mil78, DM82], which is used in Standard
ML [HMMS86, Mil87], Miranda'[Tur85], and other
languages. On the other hand, there is no widely
accepted approach to ad-hoc polymorphism, and so
its name is doubly appropriate.

This paper presents type classes, which extend the
Hindley /Milner type system to include certain kinds
of overloading, and thus bring together the two sorts
of polymorphism that Strachey separated.

Collections

widgets.filter(b -> b.getColor() == RED)
.mapToInt(b -> b.getWeight())

.sum()

Laziness in collections

widgets.stream()
.filter(b -> b.getColor() == RED)
.mapToInt(b -> b.getWeight())

.sum()

Elixir

Goals

- Extensibility
- Productivity
- Compatibility

elixir

Extensibility

Data ty
polymorp

:
ism

Processes

Processes Pid ! Message

"Any process that handles this message”

Module: function()

"Any module that exports this function

"Any data type that does 777?"

&
&

%

-module(3json).

encode(Item) when i1s_list(Item) ->
% ...
encode(Item) when i1s_binary(Item) ->

% ...
encode(Item) when is_number(Item) ->

B ..

NEE
—

(Joe) (Robert)

&
&

%

-module(3json).

encode(Item) when i1s_list(Item) ->
% ...
encode(Item) when i1s_binary(Item) ->

% ...
encode(Item) when is_number(Item) ->

B ..

The data type is the one
that Rnows how to
convert itself to JSON

defprotocol JSON do |

det encode(item)
end

JSON.encode(1tem)

defimpl JSON, for: List do
def encode(item) # ...
end

defimpl JSON, for: BitString do
det encode(item) # ...
end

defimpl JSON, for: Number do
det encode(item) # ...
end

| can write @ JSON library that
s extensible to any data type

JSON. encode(data)

"Any data type that implements a protocol”

Enumerable Protocol%

Enum.map [1,2,3], n(x) ->
X * 2

end

#=> [2,4,0]

Enumerable Protocol%

Enum.map 1..5, fn(x) ->
X * 2

end

#t=> [2,4,06,8,10]

Enumerable Protocol

Based on HasRell Iteratees
Works with in-memory collections
and resources (like I/0, File, etc)

Enumerable Protocol

Uses raw & read_ahead
file = File.stream(path)
Enum.take(file, 5)

1> dict:from_list([{a,1}]).
{d1ct,1,16,16,8,80,48,
4, 01, 04,04, 01, o1, td, 04, 0, L1,
1,01, 00, 01, 0, 0,
1{L],
[Lall]],
1,01, 04, 01, 04, i, td, 01, L, ki,
L1, 0], L], L5

Inspect Protocol %

1ex> HashDict.new(a: 1)
#HashDict<[a: 1]>

Productivity

Mix + Hex + Docs

$ mix new foo

$ cd foo

$ mix test

$ mix hex.publish
$ mix hex.docs

Compatibility

OTP & Elixir

GenServer (plus Task and Agents)
GenEvent

GenServer

GenServer

Only Only
Computation State

Task

Task.start_link/3 is similar to
proc_lib:spawn_link/3

async / await

Top
Ref

self (),
make ref (),

Pid = spawn link(
Top ! {Ref, ..}
) r

{Ref, Value} Value

async / await

task = Task.async(&calculate x/0)
Do something else
Task.await (task)

Distributed Tasks

In the remote node
Task.Supervisor.start link(name: :tasks sup)

In the client
Task.Supervisor.async (
{:tasks sup, :remote@local},
&calculate x/0)

Agent

agent = Agent.start link(&initial state/0)
Agent.update(agent, &increment/1)
Agent.get(agent, &identity/1)

LVars: Lattice-based Data Structures
for Deterministic Parallelism

Lindsey Kuper

Ryan R. Newton

Indiana University
{Ikuper, rrnewton }@cs.indiana.edu

Abstract

Programs written using a deterministic-by-construction model of
parallel computation are guaranteed to always produce the same
observable results, offering programmers freedom from subtle,
hard-to-reproduce nondeterministic bugs that are the scourge of
parallel software. We present LVars, a new model for deterministic-
by-construction parallel programmmg that generalizes existing

misanla Anntnimiannint sanndala 6an ANMacer anasléliala Annlnincnnncnbn $lané nwmn

binators can provide real speedups on practical programs while
guaranteeing determinism [22]." Yet pure programming with fu-
tures is not ideal for all problems. Consider a producer/consumer
computation in which producers and consumers can be scheduled
onto separate processors, each able to keep their working sets in
cache. Such a scenario enables pipeline parallelism and is com-
mon, for instance, in stream processing. But a clear separation of
producers and consumers is difficult with futures. because when-

Agent.Lattices

A set of agents/operations guaranteed to
deterministic for parallelism?

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

CRDTs: Consistency without concurrency control

Mihai Letia — Nuno Preguica — Marc Shapiro

Agent.CRDT

A set of agents/operations guaranteed to
replicatable across nodes?

Parallelism

Parallelism

[aziness
Pipeline parallelism
Data parallelism

Collections

widgets
> Enum.filter(fn b -> b[:color] == RED)

> Enum.map(fn b -> b[:weight])
> Enum.take(5)

Streams / Laziness

widgets

> Stream.filter(fn b -> b[:color] == RED)
> Stream.map(fn b -> b[:weight])

> Stream.take(5)

> Enum.to_l1st()

Pipeline Parallelism

widgets

> Stream.filter(fn b -> b[:color] == RED)
Stream.map(fn b -> b[:weight])

Stream. take(5)

Stream.async()
Enum.to_l1ist() \

>
>
>
>

Pipeline Parallelism

data
> ..
Stream.async()

Stream.async()

Stream.async()

>
>
>
>
>
>
>

Enum.to_list()

Pipeline Parallelism

v - I - IR+

Pipeline Parallelism

IS GenFvent e Genfvent gmal GenEvent gmatlITVIL

Data Parallelism

Stream.farm(data, ...)
Stream.pmap(dats, ...)
Stream.chunked_pmap(data, ...)

Data Parallelism

: GenEvent
Input —>—>output

Parallelism

Input — BT — Gegg\(l)clznt — A [—>output

Many interesting challenges

What is the most efficient way of
doing polymorphic dispatch?

The most effective technique for
implementing inline caches?

Many interesting challenges

How to provide pipeline parallelism
with back pressure efficiently?
Which strategies are relevant for
data parallelism?

def inspect(

def inspect(
def inspect(nil),
def inspect(:""),

def inspect(atom) do

Language highlights

Everything is an expression

defmodule Hello do

) elixir

GETTING STARTED DOCS BLOG SOURCE PACKAGES

News: Elixir v0.13.0 released,
ex.pm and ElixirConf

Elixir is a functional, meta-programming aware language built on top of

the Erlang VM. It is a dynamic language that focuses on tooling to
leverage Erlang's abilities to build concurrent, distributed and fault-
tolerant applications with hot code upgrades.

To install Elixir or learn more about it, check our getting started guide. We

also have online documentation available and a Crash Course for Erlang

developers. Or you can just keep on reading for a few code samples!

» #elixir-lang on freenode IRC

« elixir-talk mailing list (Questions)

« elixir-core mailing list (development)
» Issues tracker

» @elixirlang on Twitter

I0. puts "Defining the function world"

d e '- wor .. d d O

Hello World"

« Wiki with articles, projects and talks

done by the community

elixir-lang.org

I O'REILLY "

The 3
l’nﬁnmm-
OLranuners

Functional
|> Concurrent
|> Pragmatic

> Fun
| TING STARTED IN FUNCTIONAL PROGRAMMING

Simon St.Laurent & J. David Eisenberg

Dave Thomas

Foreword by
José Valim,
Creator of Elixir

edited by Lynn Betghley

plotaformatec

consulting and software engineering

plataformatec

Elixir Radar

The weekly Elixir newsletter, by Plataformatec

Elixir has a thriving community that is growing fast! Our community needs a
way to keep up with all the interesting stuff that Elixirists are building and
sharing. That's why we created Elixir Radar.

Subscribe now

By subscribing to Elixir Radar, you'll receive one email every week, with fresh
news from the Elixir Community.

You will receive stuff like: top blog posts, interesting libraries, great talks,
events and job opportunities.

Elixir Radar is published by Plataformatec.

plataformatec.com.br/elixir-radar

elixir

@elixirlang / elixir-lang.org

