
TM

TM

cars

homes

refrigerators phones

televisions

tablets

energy security

fridge

offices
factories

entertainment

learning

schools

health

safety

productivity

routers

The next slide makes some
people uncomfortable

• Feel that it is disrespectful of
authority

• Believe that government
officials cannot foment terror

fridge

aDatacenter

aFriend

aClub

fridge

TM

Physical or electronic artifact of Internet systems

• light fixture

• email

• refrigerator

• voice mail

• cellphone

• SMS

• electronic door lock

• etc.

SM

TM

fridge

aDatacenter

aFriend

an encrypted message

Islet

advantages over
Datacenterism

• Coordination effectiveness

– versus datacenters of competitors

• Responsiveness

– versus load balancing on datacenters

• Reliability

– works even communication with

datacenters is cut off

fridge

aMerchant

aMerchant

anAgent

anAgent

start finishtrillions
of nodes

aNode

node3node2node1

anotherNode

Link[aNode, anotherNode, 4]

4

3 5

Path[node1, node3, 8]

When⊩ Path[start, finish, aCost]→

⊢ aCost=Minimum {nextCost + remainingCost

| ⊫ Link[start, next, nextCost],

⊩ Path[next, finish, remainingCost]}▮

// a cost from start to finish is the minimum of the set of the

// sums of the cost for the next node after start and

// the cost from that node to finish

start finishnext
nextCost remainingCost

When⊩ Path[start, finish, aCost]→

⊢ aCost=Minimum {remainingCost +previousCost

| ⊫ Link[previous, finish, previousCost],

⊩ Path[start, previous, remainingCost]}▮

// a cost from start to finish is the minimum of the set of the

// sums of the cost for the next node after start and

// the cost from that node to finish

start finishprevious
previousCostremainingCost

Inconsistent Information

Classical Logic

Inconsistency Robustness

Edited by

Carl Hewitt
and

John Woods
assisted by

Jane Spurr

© 2015 Individual author and College Publications

*Birds of a feather

Types (Interfaces) and Messages

myBalance := myBalance + anAmount

(anAmount > myBalance)
also

myBalance := myBalance - anAmount

anAmount > myBalance

Account

Account

Account

withdraw[anAmount]

deposit[anAmount]

Overdrawn[]

myBalance

getBalance[]

readersQ

theResource∎read[aQuery]

writersQ

theResource∎write[anUpdate]

 numberReading := numberReading+1

writing := True

numberReading := numberReading-1

writing := False

ReadersWriter initially: writing=False, numberReading=0

invariant: writing ⇒ numberReading=0

read[aQuery]

ReadersWriter

write[anUpdate]

theResource∎write[anUpdate]

theResource∎read[aQuery]

