Steganography and Erlang

Derek Brown
derekbrown121@gmail.com

Overview

Steganography — Concealing a message or file
within another file or communication medium

Agenda
* General concepts

* Discuss 2 types:

— Within images

— Within ICMP Echo packets
 Code samples and demos

Examples

Examples of steganographic techniques:
* Low-order bits of image or sound files
* Fields in network packets

* Echo in sound files

* Whitespace manipulation

 XML: vs.

Uses

* Digital watermarking

e Communication when communication is
monitored or restricted

* Fun

Steganalysis

Detecting messages hidden with steganographic
techniques

Comparing with source files from the same
source (e.g., a camera)

Statistical analysis of characteristics of the data

Basic Strategy for Images — First Pass

Embedding Message
The bits of the source bytes will be embedded

Set the low-order bit of each destination byte to next source
bit

Basic Strategy for Images — First Pass

Embedding Message
The bits of the source bytes will be embedded

Set the low-order bit of each destination byte to next source
bit

Extracting Message
Pull out the low-order bit of each byte
Build the output bytes from the bits

Using Evan Miller’s fork of erl_img for the image reading,
writing, and image format handling

Message Extraction, Demo 1

1> img png:read and write message(
”innocuous.png", ”mystery.out").

Output file could be anything

Can use the “file” command to determine

$ file mystery.out
$ mv mystery.out mystery.png

When to Stop Extracting Bits?

Include 2-byte length before message

Thus first 16 bytes of output each contain 1 bit
from the length

Limits message length to 65535 bytes
(2716)-1

What if the Message is Too Big?

What if the Message is Too Big?

Allow N low-order bits to be set
But, more bits set -> Easier to visually detect

Message Embedding, Demo 2

For a 300x300 image:

300 * 300 pixels =90,000 pixels total
90,000 pixels * 3 bytes per pixel (RGB) =
270,000 bytes

270,000 bytes - 40 for our header (to be
examined shortly) = 269,960 bytes available

269,960 div 8 == 33,745 max message size
with 1 bit per byte

Message Embedding, Demo 2

1> img png:add message from file(
Ydemo2.dat"”, "all black 300x300.png”,
”»demo2.png").

Message Embedding, Demo 2

1> img png:add message from file(
”demo2.dat"”, "all black 300x300.png”,
”»demo2.png").

Fails because demo?2.dat is too large. Solution:

[{bits per byte, 2}]

Message Embedding, Demo 2

We can increase bits_per byte and see how it
visually affects the output

What if the top of the image isn’t
noisy?

The top of the image may not be the noisiest
part of it

What if the top of the image isn’t
noisy?

The top of the image may not be the noisiest
part of it

Solution: specify an offset % to start the
embedding

Avoiding dense modified sections

With high bits-per-byte, visible changes appear
packed together

Avoiding dense modified sections

With high bits-per-byte, visible changes appear
packed together

Solution: specify byte spacing

High-level Embedding Entrypoints

img png:add message from file(
MsgFile, InFile, OutFile, Opts)

img png:add _message(
Msg, InFile, OutFile, Opts)

Embedding Initialization

{ok, Img} = erl img:load(ImgPath),
Pixmap = hd(Img#erl image.pixmaps),
Pixels = Pixmap#erl pixmap.pixels,
[First | Rest] = Pixels,
State = #state{

curr_row = First,

rest rows = Rest,

img = Img}.

Embedding Execution

Each bit to set is destined for a specific byte and
bit in the image

Create list of {ByteNum, BitNum, BitVal}
specifications

Given that specification, just do it (read: apply
the spec to the source file)

Header

Header values:

* Number of embedded source bytes: 16 bits
 Offset Percent: 8 bits

* Spacing: 8 bits

* Bits-per-byte: 8 bits

Header Specification Example

Specification for offset percentage of 5
Tuple members: {ByteNum, BitNum, BitVal}
[{16, O, 1},

{17, O, 0},

{18, O, 1},

{19, O, 0},

{20, 0O, 0},

{21, O, 0},

{22, 0, 0},

{23, 0, 0}]

Message Specification

* Create a list of the bits from the message

Message Specification

* Create a list of the bits from the message
* Given the message length, offset, spacing, and
bits-per-byte

— Calculate a list of the destination byte num/bit
num for each bit in the message

Message Specification

* Create a list of the bits from the message
* Given the message length, offset, spacing, and
bits-per-byte

— Calculate a list of the destination byte num/bit
num for each bit in the message

* Combine the two lists to create a specification
of what to set (as done for the header)

Message Specification Part 1 —
Message Bits

1. Convert Byte to big-endian list of bits:
[X || <<X:1>> <= <<Byte:8>>]

Message Specification Part 1 —
Message Bits

1. Convert Byte to big-endian list of bits:
[X || <<X:1>> <= <<Byte:8>>]

2. Convert each Byte in Message to a list of bits
(list of lists)
BytesBigEndian = lists:map(
fun(B) -> end,
Message),

Message Specification Part 1 —
Message Bits

3. Flip each list to little-endian
BytesLittleEndian = lists:map(
fun(L) -> lists:reverse(L) end,
BytesBigEndian),

Message Specification Part 1 —
Message Bits

3. Flip each list to little-endian
BytesLittleEndian = lists:map(
fun(L) -> lists:reverse(L) end,
BytesBigEndian),

4. Flatten to one list
lists:flatten(BytesLittleEndian).

Message Specification Part 2 —
Destination Byte/Bit Num

e Qutput: list of {ByteNum, BitNum}

* ByteNum:
— Starts at Offset (converted from OffsetPercent)
— Each is used BitsPerByte times

— Advances by Spacing

* BitNum:
— From O to BitsPerByte

Message Specification Part 2 —
Destination Byte/Bit Num Example

First message byte, with Offset 2, Spacing 2, BitsPerByte 2:

[142, 0},
{42, 1},
{44, 0},
{44, 1},
{46, 0},
{46, 1},
{48, 0},
{48, 1},
]

Message Specification: Combine Bits
and Locations

Bits: [0, 0, 1, 0, ...]
Locations: [{42,0}, {42,1}, {44,0}, {44,61}, ..]
Combined: [{42, O, 0}, {42, 1, 0}, {44, O, 1}, {44, 1, 0}, ...]

Easy way to create Combined?

Message Specification: Combine Bits
and Locations

Bits: [0, 0, 1, 0, ...]
Locations: [{42, 0}, {42,1} {44,60}, {44, 1} ..]
Combined: [{42, O, 0}, {42, 1, 0}, {44, O, 1}, {44, 1, 0}, ...]

lists:zipwith(
fun({ByteNum, BitNum}, Bit)
-> {ByteNum, BitNum, Bit} end,
Locations,
Bits).

Just Do It

Apply the message specification to the input
pixels:

Pixels = Pixmap#erl pixmap.pixels.

Contents of Pixels: [{RowNum, BinaryBytes]}, ..

Example: [{0, <<55,2,129,17>>}, ...]

.]

Really Just Do It

* For each tuple in specification, advance in the
Pixels list to specified overall ByteNum

Really Just Do It

* For each tuple in specification, advance in the
Pixels list to specified overall ByteNum

e Separate the byte on which to set a bit:
{Prefix, Byte, Postfix} =
extract parts of row(
BinaryBytes, RowByteNum)

Really Just Do It

* For each tuple in specification, advance in the
Pixels list to specified overall ByteNum

e Separate the byte on which to set a bit:
{Prefix, Byte, Postfix} =
extract parts of row(
BinaryBytes, RowByteNum)

* Set bit BitNum of Byte to Bit

Really Just Do It

* For each tuple in specification, advance in the
Pixels list to specified overall ByteNum

e Separate the byte on which to set a bit:
{Prefix, Byte, Postfix} =
extract_parts_of row(
BinaryBytes, RowByteNum)

Set bit BitNum of Byte to Bit

* Reconstruct the row binary

<<Prefix/binary, ModifiedByte, Postfix/
binary>>

Message Extraction - Header

* Prepare specification of byte num/bit num pairs
to read the header

Example: OffsetPct is in bit O of bytes 8 though 15
[{8, @}, {9, o}, {10, o}, {11, @}, {12, 0},
{13J @}) {14) @}.’ {15) @}]

Message Extraction - Header

* Prepare specification of byte num/bit num pairs
to read the header
Example: OffsetPct is in bit O of bytes 8 though 15
[{8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, O},
{13, o}, {14, o}, {15, 0}]
* Read the specified bits

Message Extraction - Header

* Prepare specification of byte num/bit num pairs
to read the header

Example: OffsetPct is in bit O of bytes 8 though 15
[{8, @}, {9, e}, {16, o}, {11, e}, {12, @},
{133 @}) {141 @}: {15: @}]

* Read the specified bits

e Convert the bits to an integer (reversing them to
be big-endian):
<<Int:8>> = << <<Bit:1>> ||
Bit <- lists:reverse(Bits) »>>

Message Extraction - Message

Given the message length, offset, spacing, and
bits-per-byte from the header:

* Calculate a list of the source byte num/bit
num for each bit in the message

* Read the specified bits
* Convert the bits into a list of bytes

Message Embedding, Demo 3

Vary spacing and offset
Options = [{bits per byte, 6}],
img png:add message from file(
"demo3.dat", "building.png”, "demo3.png",
Options).

Also try:
Options = [{bits per byte, 6}, {spacing, 6}].
Options [{bits_per byte, 6}, {offset pct,
30}].

Embedding in ICMP Echo Request
Packets

ICMP: Internet Control Message Protocol
Sits on top/part of IP packets

This technique motivated by an article in First
Monday by Craig Rowland

Embedding in ICMP Echo Request

Packets

ICMP used by network devices for

communicating status or other information

* Packet destination unreachable

* Redirect to alternate router

* Test reachability (echo request/reply (used to

ping))

ICMP Echo Request Header

Type: 8 bits
Echo Request: 8

Code: 8 bits
Must be O

Header Checksum: 16 bits

Identifier: 16 bits
Arbitrary
Sequence Number: 16 bits
Arbitrary. Usually increasing number.
Data (payload)
Arbitrary, but risks fragmentation if too large

ICMP Echo Request / Ping Demo

Can use tools such as tcpdump or Wireshark to
examine packets in transit

$ sudo tcpdump -X -i 100 \
‘icmp[icmptype] == icmp-echo’

$ ping -cl1l -pff 127.0.0.1

ICMP Echo Request Embed Location

An easy place to insert a message in an ICMP
packet?

ICMP Echo Request Embed Location —
Option 1
The payload field!

Demo:

icmp data receive server:start receive(
payload).

icmp data send:send(
"127.0.0.1", payload, “Shhh!”).

ICMP Echo Scheme- Payload

Problem: it’s visible via tcpdump, etc.

We’ll look at other options.

gen_icmp
Abusing gen udp
for great good!

Sending Echo Packets with gen icmp

A project from Michael Santos

Allows sending of manually-constructed ICMP
packets (not just echo)

Sending Echo Packets with gen icmp
{ok, Socket} = gen icmp:open().
Packet = gen _icmp:echo(

Family, Id, SequenceNumber,

Payload).

gen_icmp:send(Socket, Host, Packet).

Loop if more data

Receiving Echo Packets with gen icmp
{ok, Socket} = gen icmp:open().

{ok, {Address, Packet}} =
gen_icmp:recv(Socket, Length, Timeout).

Loop

ICMP Echo Scheme - Payload

Send

For each block of size N of the message:
Id: random for given data to send
Sequence number: increasing from O
Payload: the block

ICMP Echo Scheme - Payload

Send

For each block of size N of the message:
Id: random for given data to send

Sequence number: increasing from 0
Payload: the block

Receive

[Ipv4Hdr, IcmpHdr, Payload] =
pkt:decapsulate(ipv4, Packet),

erlang:binary to list(Payload).

ICMP Echo Scheme - Payload

It’s too visible!

Other options?

ICMP Echo Request Embed Location —
Option 2

The identifier field!

ICMP Echo Scheme — Identifier

Send
For each 2 bytes of the message (or 1 byte at end):
Id: (M bsl 8) bor N (orjust (M bsl 8) if last single byte to
send)
Sequence number: 0
Payload: random

ICMP Echo Scheme — Identifier

Send

For each 2 bytes of the message (or 1 byte at end):

Id: (M bsl 8) bor N (or just (M bsl 8) if last single byte to send)
Sequence number: 0
Payload: random

Receive
[Ipv4Hdr, IcmpHdr, Payload] =
pkt:decapsulate(ipv4, Packet),

<<M:8, N:8>> = <<IcmpHdr#icmp.Id:16>>,
[M, NJ.

ICMP Echo Scheme— Identifier

Demo:

icmp _data receive_server:start receive(
identifier).

icmp _data send:send(
"127.0.0.1", identifier, “Shh!”).

ICMP Echo Scheme— Identifier

Problem: it’s visible via tcpdump, etc. (just less
obvious than payload)

Other options?

Can we communicate data without directly
sending the bits/bytes of the message?

ICMP Echo Request Embed Location —
Option 3

Use the parity of the length of the (arbitrary)
payload represent a bit of the message!

Payload length is even: 0
Payload length is odd: 1

Thus 8 packets to send each byte

ICMP Echo Scheme—- Payload Length

Problems using multiple packets to send each byte
(apart from being slow)?

ICMP Echo Scheme—- Payload Length

Problems using multiple packets to send each byte
(apart from being slow)?

Sending IP packets is unreliable (unlike TCP)
A dropped packet would skew all those after it

We need to know when we’re at a byte boundary

ICMP Echo Scheme—- Payload Length

Send

For each bit of the message:
ld: random for given message to send
Sequence number: increasing from O

Payload: random, with parity of length based on the
bit to send

ICMP Echo Scheme—- Payload Length

Receive

[Ipv4Hdr, IcmpHdr, Payload] =
pkt:decapsulate(ipv4, Ip),

SegNum = IcmpHdr#icmp.sequence,

IsNewByte = (SegNum rem 8) =:= 0,

Payload =
erlang:binary to list(Payload),

Bit = length(Payload) rem 2.

Then use IsNewByte and Bit somehow

ICMP Echo Scheme—- Payload Length

We need to keep track of what state we’re in:
— Waiting for a new byte (i.e., the low-order bit)
— Waiting for a higher-order bit

Also, the bits receive so far for the current byte

We can use a finite state machine —gen_fsm

Finite State Machines

 Asystemisin one of N states

e An event transitions the FSM to some other
(possibly the same) state

Finite State Machines - Example

Digital keypad lock

e State: locked. Event: correct code entered.
Transition: unlocked

e State: locked. Event: incorrect code entered.
Transition: locked

e State: unlocked. Event: lock button pressed.
Transition: locked

e State: unlocked. Event: timeout.
Transition: locked

ICMP Echo Scheme— Payload Length -
FSM

State: await_low_bit

Event: low order bit Bit arrives (evenly divisible
by 8)

Action:
* CurrentByte = Bit
* Increment BitNum

Transition: await_higher_bit

ICMP Echo Scheme— Payload Length -
FSM

State: await_higher_bit
Event: higher order bit Bit arrives

Action:

 CurrentByte = CurrentByte bor (Bit bsl BitNum)
— If not the 8th bit, increment BitNum

— Else, reset CurrentByte and BitNum and return
complete byte to caller

Transition:

— If not the 8th bit: await_higher_bit
— Else: await_low _bit

ICMP Echo Scheme— Payload Length -
FSM

State: await_low_bit

Event: higher order bit Bit arrives

Action:

* |gnore it (thus waiting for the next low-order
bit)

Transition: await_low_bit

ICMP Echo Scheme— Payload Length -
FSM

State: await_higher_bit
Event: low order bit Bit arrives
Action:

* Forget the partial data in CurrentByte
— Reset CurrentByte and BitNum

— Handle as would have been done if state had
been await_low_bit

Transition: await_higher_bit

ICMP Echo Scheme—- Payload Length

Demo:

icmp _data receive_server:start receive(
payload len).

icmp _data send:send(
"127.0.0.1", payload len, “Shh!”).

Questions?

References

Base repository for this presentation
https://github.com/derek121/erlang_factory 2015

Steganography
https://www.cs.bham.ac.uk/~mdr/teaching/modules03/security/
students/SS5/Steganography.htm

erl_img
https://github.com/evanmiller/erl_img

ICMP/Ping
http://en.wikipedia.org/wiki/Ping_%28networking_utility%29

References (cont.)

Appropriating Network Protocols

http://firstmonday.org/ojs/index.php/fm/article/view/
528/449

gen_icmp
https://github.com/msantos/gen_icmp

gen_icmp Blog Post

http://blog.listincomprehension.com/2010/12/icmp-
ping-in-erlang-part-2.html

