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Introduction

Ou

The Parallella
|

The Parallella

@ An ARM-based single board computer

@ Main feature: the Epiphany co-processor

Figure: Adapteva's Parallella’

limage copyright Gareth Halfacree
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Introduction

The Epiphany

The Parallella

Our goal

@ 32-bit general-purpose RISC
o Many, very simple cores
o No out-of-order execution
o No caches
@ Each core has 32KB of
SRAM

@ Network on Chip: Memory
space is divided in 64 x 64
1MB sections

Coprocessor to
ARMY/Intel CRU Smtpercer

Figure: The Epiphany Architecture
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Introduction The Parallella

Our goal

Our goal

Build a modified ERTS that will run Erlang code on
CO-processors

@ Processes are explicitly spawned on the Epiphany

e Current limitation: one process per core

Run existing code with minimal modification
Possible use cases

o Lower power consumption of Erlang workloads
o Reserve processor throughput for Erlang processes
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How to use it

Erlang on the Parallella 5
Implementation

Why run Erlang on the Epiphany?

@ Experiment with Erlang on low-power devices

e 64-core Epiphany edition has more FLOPS/W than best
contemporary GPU (NVIDIA Kepler)
e Pity to use such devices only via low-level languages

e Erlang is a natural fit!

o Concurrent programming model
o Distribution
o Fault tolerance
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How to use it

Erlang on the Parallella B
Implementation

Programming model

1> P1 = erlang:spawn(...). 1> P2 = epiphany:spawn(...).
2> 1link(P1). 2> 1ink(P2).

3> P1 ! self(). 3> P2 ! self().

4> receive pong -> ok end. 4> receive pong -> ok end.
5> exit(P1, plz). 5> exit (P2, plz).

Figure: Code for the Epiphany works like any other Erlang

Imposed limitations change how programs should be structured:
@ Number of processes

@ Amount of memory
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How to use it

Erlang on the Parallella B
Implementation

How do | use it with existing code?

@ Q: Do I just change spawn(X) into epiphany:spawn(X)?
o A: Sometimes that is sufficient, sometimes not

@ The limitations need to be considered
e For process count: Use an arbitrator
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How to use it

Erlang on the Parallella Implementation

High-level structure

@ Master-slave structure

@ Both are built on the same code

Hardware ARM Epiphany
A BEAM VM| | | [BEAM vm|

v Runtime
(O System

Communication

A
Y

Figure: System overview
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Erlang on the Parallella Implementation

High-level structure

@ Master-slave structure

@ Both are built on the same code

BEAM VM ARM BEAM VM Epiphany
|Pattern Matchingl | Binary Matchingl |Pattern Matchingl
| Atoms | | External things | | Atoms |
| Message Passingl | Maps | | Message Passingl

Figure: VM closeup
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How to use it

Erlang on the Parallella Implementation

Synchronous and asynchronous communication

@ Syscalls: GC, some built-in functions
@ Message buffers: messages, memory management, etc...

DRAM

In Out
'MESSAGE _ !| |l FREE i
I{ping,_<0.12>}!| [L Ox1234ABCD |

ARM Syscall Epiphany

[GCi | Call BIF 10!

Figure: Master-slave communication
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How to use it
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Code loading

@ Code is not loaded into both systems automatically

@ code_server makes sure they run the same version

ARM Epiphany
[BEAM VM| | s{BEAM VM|
Byte- /
ngee Threaded
%! Loader Code

Figure: Loading of threaded code
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How to use it

Erlang on the Parallella Implementation

Performance gotchas

@ Syscalls will never be fast
@ Rule of thumb: “Does it access any global state?”

@ atom ! Message is a syscall
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Future work

Summary
Summary ’

What next?

@ Performance

o We need to fit code&data in SRAM
e The solution is called HIPE
o In the future, you will need to HiPE-compile your hotpath
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Future work

Summary Summary

Summary

Current status

e A modified Erlang Runtime System that runs Erlang on the
Epiphany co-processor

@ Runs existing Erlang code with minimal modification
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