Running Erlang on the Parallella

Magnus Lang! Kostis Sagonas'?

IDepartment of Information Technology
Uppsala University

2School of Electrical and Computer Engineering

National Technical University of Athens

Erlang User Conference, 2015

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

Introduction

Ou

The Parallella
|

The Parallella

@ An ARM-based single board computer

@ Main feature: the Epiphany co-processor

Figure: Adapteva's Parallella’

limage copyright Gareth Halfacree

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

Introduction

The Epiphany

The Parallella

Our goal

@ 32-bit general-purpose RISC
o Many, very simple cores
o No out-of-order execution
o No caches
@ Each core has 32KB of
SRAM

@ Network on Chip: Memory
space is divided in 64 x 64
1MB sections

Coprocessor to
ARMY/Intel CRU Smtpercer

Figure: The Epiphany Architecture

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

Introduction The Parallella

Our goal

Our goal

Build a modified ERTS that will run Erlang code on
CO-processors

@ Processes are explicitly spawned on the Epiphany

e Current limitation: one process per core

Run existing code with minimal modification
Possible use cases

o Lower power consumption of Erlang workloads
o Reserve processor throughput for Erlang processes

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

How to use it

Erlang on the Parallella 5
Implementation

Why run Erlang on the Epiphany?

@ Experiment with Erlang on low-power devices

e 64-core Epiphany edition has more FLOPS/W than best
contemporary GPU (NVIDIA Kepler)
e Pity to use such devices only via low-level languages

e Erlang is a natural fit!

o Concurrent programming model
o Distribution
o Fault tolerance

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

How to use it

Erlang on the Parallella B
Implementation

Programming model

1> P1 = erlang:spawn(...). 1> P2 = epiphany:spawn(...).
2> 1link(P1). 2> 1ink(P2).

3> P1 ! self(). 3> P2 ! self().

4> receive pong -> ok end. 4> receive pong -> ok end.
5> exit(P1, plz). 5> exit (P2, plz).

Figure: Code for the Epiphany works like any other Erlang

Imposed limitations change how programs should be structured:
@ Number of processes

@ Amount of memory

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

How to use it

Erlang on the Parallella B
Implementation

How do | use it with existing code?

@ Q: Do I just change spawn(X) into epiphany:spawn(X)?
o A: Sometimes that is sufficient, sometimes not

@ The limitations need to be considered
e For process count: Use an arbitrator

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

How to use it

Erlang on the Parallella Implementation

High-level structure

@ Master-slave structure

@ Both are built on the same code

Hardware ARM Epiphany
A BEAM VM| | | [BEAM vm|

v Runtime
(O System

Communication

A
Y

Figure: System overview

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

How to use it

Erlang on the Parallella Implementation

High-level structure

@ Master-slave structure

@ Both are built on the same code

BEAM VM ARM BEAM VM Epiphany
|Pattern Matchingl | Binary Matchingl |Pattern Matchingl
| Atoms | | External things | | Atoms |
| Message Passingl | Maps | | Message Passingl

Figure: VM closeup

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

How to use it

Erlang on the Parallella Implementation

Synchronous and asynchronous communication

@ Syscalls: GC, some built-in functions
@ Message buffers: messages, memory management, etc...

DRAM

In Out
'MESSAGE _ !| |l FREE i
I{ping,_<0.12>}!| [L Ox1234ABCD |

ARM Syscall Epiphany

[GCi | Call BIF 10!

Figure: Master-slave communication

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

How to use it
Erlang on the Parallella "
Implementation

Code loading

@ Code is not loaded into both systems automatically

@ code_server makes sure they run the same version

ARM Epiphany
[BEAM VM| | s{BEAM VM|
Byte- /
ngee Threaded
%! Loader Code

Figure: Loading of threaded code

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

How to use it

Erlang on the Parallella Implementation

Performance gotchas

@ Syscalls will never be fast
@ Rule of thumb: “Does it access any global state?”

@ atom ! Message is a syscall

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

Future work

Summary
Summary ’

What next?

@ Performance

o We need to fit code&data in SRAM
e The solution is called HIPE
o In the future, you will need to HiPE-compile your hotpath

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

Future work

Summary Summary

Summary

Current status

e A modified Erlang Runtime System that runs Erlang on the
Epiphany co-processor

@ Runs existing Erlang code with minimal modification

Magnus Lang, Kostis Sagonas Running Erlang on the Parallella

	Introduction
	The Parallella
	Our goal

	Erlang on the Parallella
	How to use it
	Implementation

	Summary
	Future work
	Summary

