Univnefrsity
St Andrews

4

SEVENTH FRAMEWORK
PROGRAMME

Bridging the Divide:
A New Tool-Support Methodology for
Programming Heterogeneous Multi-

Core Machines

Chris Brown, Vladimir Janjic and Kevin Hammond
University of St Andrews, Scotland

T: @chrismarkbrown, @paraphrase_fp7
E: cmb21@st-andrews.ac.uk

W: http://www.paraphrase-ict.eu

2014: a ManyCore Odyssey

AMD Mullins/Beema APU

DOR3L Interface

4 Core x86 CPU

, 2MB
\Video Decode | Marth
ideo Decode | Mort A

Bridge
’ L2

Puma+ Puma+ Fuma+ Fuma+
Core Core Core Corne
T

Grsihics Lo Nest VCE = Graphics Core next to GPU with 128
GPU cores

= Usedine.g. Xbox 360

= 1 ARM PSP Security Core

= Power consumption ~“4.5W

The Future: “megacore” computers?

* Hundreds of thousands, or millions, of (small) cores

What will “megacore” computers look |

like?

University
5t Andrews

= Probably not just scaled versions of today’s multicore

Perhaps hundreds of dedicated lightweight integer units
Hundreds of floating point units (enhanced GPU designs)

A few heavyweight general-purpose cores

Some specialised units for graphics, authentication, network etc

possibly soft cores (FPGAs etc)
Highly heterogeneous

What will “megacore” computers look |
like? i nd

= Probably not uniform shared memory
= NUMA is likely, even hardware distributed shared memory
" Or even message-passing systems on a chip
= shared-memory will not be a good abstraction

Laki

» 700 dual socket Xeon 5560 2,8GHz
(“Gainestown”)

> 12 GB DDR3 RAM / node
> Infiniband (QDR)

» 32 nodes with additional Nvidia Tesla
S1070

» Scientific Linux 6.0

hermit (phase 1 step 1)

>

>

38 racks with 96 nodes each

96 service nodes and 3552 compute
nodes

Each compute node will have 2 sockets

AMD Interlagos @ 2.3GHz 16 Cores
each leading t6-113.664 core
Nodes with 32GB and 64GB memory
reflecting different user needs

2.7PB storage capacity @ 150GB/s IO
bandwidth

External Access Nodes, Pre- &
Postprocessing Nodes, Remote
Visualization Nodes

Tianhe-2, Chinese National University of Defence Technology

33.86 petaflops/s (June 17, 2013)

16,000 Nodes; each with 2 Ivy Bridge multicores and 3 Xeon Phis
3,120,000 x86 cores in total!!!

L'niverrﬁit}r
o
St Andrews

* Even mobile phones are
multicore

= Samsung Exynos 5 Octa has 8 cores, 4 of
which are “dark”

* Performance/energy tradeoffs
mean systems will be
increasingly parallel

ALL Future
Programming will be
Parallel!

* |f we don’t solve the multicore

challenge, then no other
advances will matter!

X=X
Parallel Hardware Today *%’

= Computer hardware is getting more and more parallel
= 64-core machines available off-the-shelf for a modest price

" |tis also getting more and more heterogeneous

= Any decent desktop machine comprises a multicore CPU and many-core
GPU

= Even mobile phones come with multiple GPUs

The Manycore Challenge

“Ultimately, developers should start thinking about tens, hundreds, and
thousands of cores now in their algorithmic development and deployment
pipeline.”

The important challenge in Computer Science

(Intel)
W — 4

Also recognised as thematic priorities by EU and
national funding bodies

Patrick Leonard, Vice President for Product Development
Rogue Wave Software

E,

But Doesn’t that mean millions of
threads on a megacore machine?? Uity

X PFih.-evanthg__}__— ThreadSr.tlt_pe

W Move Help

I.:"—".I I.(_-l I.&_ il
D &S]
zes ‘ Bookmarks ‘ Timeline
mmng 0s 0.5s 1s 1.5s5 25 2.5s 3s 3.55 ds 4.5s
e
reate thread Activity

eq GC req
ar GC req
ligrate thread
hread wakeup

hutdown e
ser message
erf counter i
erf tracepoint || HEC1 -
reate spark
ud spark
HEC 2
verflowed spark
an spark : T - 0 . . :
B Time ‘ Heap ‘GC Spark stats | Spark sizes ‘ Process info ‘ Raw events |
zzled spark
iced spark HEC Converted Overflowed Dud GC'd Fizzled

Totzi 331161527 20174 319111597 12029791

HEC 0 0 0 17524701 1622834
HEC1 16632074 2706 0 0 15366408 1048339
0 0 20474440 971840

:IE] HEC 2 21560942 2131
Bl |

1tlog (1455511 events, 5.111s)

Thinking Parallel

University
St Andrews

III

Fundamentally, programmers must learn to “think paralle
= this requires new high-level programming constructs
= perhaps dealing with hundreds of millions of threads

You cannot program effectively while worrying about deadlocks etc.
= they must be eliminated from the design!

You cannot program effectively while fiddling with communication etc.
= this needs to be packaged/abstracted!

You cannot program effectively without performance information
= this needs to be included as part of the design!

University
of
St Andrews

SEVENTH FRAMEWORK
PROGRAMME

ParaPhrase Project: Parallel Patterns for Heterogeneous Multicore Systems
(ICT-288570), 2011-2014, €4.2M budget

13 Partners, 8 European countries
UK, Italy, Germany, Austria, Ireland, Hungary, Poland, Israel

Coordinated by Kevin Hammond St Andrews mmm

AGH
] Wi Ty
\.) gt ROBERT GORDON
@ Queeris University National QY UNIVERSITY-ABERDEEN
HLR|sS® | College:* =
Ireland UNIVERSITA i,
DEGLI STUDI F o i N
DITORING [af ‘fse.
Mellano S e | & e G
x‘ , TRURIMENSIS B ¥
TECHNOLOGIES sollware compelence canier ¥
hagenberg I'SINVEESITA DI Fl=a

The ParaPhrase Approach '

University
5t Andrews

= Start bottom-up

= jidentify (strongly hygienic) COMPONENTS both legacy and

new programs

= ysing semi-automated refactoring

= Think about the PATTERN of parallelism
= e.g. map(reduce), task farm, parallel search, parallel completion, ...

= STRUCTURE the components into a parallel program
= turn the patterns into concrete (skeleton) code
= Take performance, energy etc. into account (multi-objective optimisation)
= also using refactoring

= RESTRUCTURE if necessary! (also using refactoring)

In This Talk...

= Provide an Erlang skeleton library to make it easier to deal with
parallelism
= Extend this library to deal with CPU/GPU systems

= Heterogeneous Erlang skeletons
= openCL bindings

" Provide refactoring Tool-Support to ease the introduction of the
GPU code

= Show initial heterogeneous results for Erlang

Some Common Patterns

= High-level abstract patterns of common parallel algorithms

Far Reduce

v/

-

Google map-
reduce combines

Il ‘
two of these!

Generally, we need
to nest/combine
—>{s1}>{s: patterns in arbitray

wayj‘ _
D]

oo
o

W | ooo | @
(g

Partitiocn w Rebuild \ '

The Skel Library for Erlang 3/

= Skeletons implement specific parallel patterns
= Pluggable templates

= Skel is a new (AND ONLY!) Skeleton library in Erlang
= map, farm, reduce, pipeline, feedback
= instantiated using skel:do

" Fully Nestable chrisb.host.cs.st-andrews.ac.uk/skel.html

https://github.com/ParaPhrase/skel |

= A DSL for parallelism

OutputItems = skel:do(Skeleton, InputlItems).

Parallel Pipeline Skeleton

= Each stage of the pipeline can be executed in parallel
= The input and output are streams

{pipe, [Skel;, Skely, - - -, Skel,]}

Skel:do([{pipe,[Skell, Skel2,..,SkelN]}], Inputs).

Farm Skeleton

= Each worker is executed in parallel
= A bit like a 1-stage pipeline

skel:do([{farm, Skel, M}], Inputs).

Using The Right Pattern Matters

Speedups for Matrix Multiplication

1 | | | | | |

24 || —— Naive Parallel |
29 | | —— Farm -
20 || —=— Farm with Chunk 16 |

Download from ...

http://www.cs.st-andrews.ac.uk/~chrisb/ParaPhrase Refactorer.tar.gz (Refactoring Tool)

https://github.com/ParaPhrase/skel

(Skel Library)

githI.Ib Explore GitHub Search Features Blog

: | ParaPhrase / skel

Code Network Pull Requests o lssues o0

A Streaming Process-based Skeleton Library for Erlang — Read more

@& Clone in Mac G ZIP HTTP S5H | Git Read-Only https://github.com/ParaPhrase/skel.git

7 branch: master - Files Commits Branches 1

skel / @

Remove imb.erl - we have no idea where it appeared from
' lenary authored 3 months ago

B examples 3 months ago Remove imb.erl - we have no idea where it appeared from [lenary]

I include 3 months ago Initial Release [lenary]

B priv 3 months ago Missing default.args [lenary]

Sign up for fre

W Star o

latest commit

EXaXc)
Constructing Farms...

= Seq, component wrapper for worker function:

= {seq, fun worker/1l}

= Create a farm of workers:

= {farm, [{seq, fun worker/1l}], nWorkers}

= Wrap it inside a skel call:

= skel:do([{farm, [{seqg, fun worker/1l}], nWorkers}],
input)

The ParaPhrase Approach

Univerrsitf
St Andrews

Sequential Erlang C/C++ Java Haskell
Code

{(‘FL :
Generic Sl | Pu—— Costing/
Pattern Library 2 Profiling
Refactoring
Parallel / ' \\
Code Erlang C/C++ Java Haskell
T Mellanox Infiniband
1 T
Nvidia
Tesla Opteron Opteron Xeon Phi

Nvidia Nvidia
\) GPU GPU

Refactoring Tool Support

Univerrﬁ'tf
St Andrews

= The process of changing the structure of an application while
preserving its functional semantics

= Semi-automated approach that is more general than fully
automated parallelisation techniques

€9 emacs@HL-LT (==
File Edit Options Buffers Tools [Wrangler) Erlang Help

Refactor > Rename Variable Name CcCwrv
Lbhee@xa Inspector > Rename Function Name C-cCwrf
—module (vest) . s E—— Rename Module Name C-cC-wrm
| expore crerom) « e = Generalise Function Definition CcCg

Move Function to Another Module C-cC-wm
repeat (X N=<0 -> Skeletons » Function Extraction C-cC-wnf
epenc () —> e —— Introduce New Variable C-cC-wnv

io:format ("Hello"), Inline Variable C-cC-wi
repeac (N-1) . Version Fold Expression Against Function C-cC-wff
£0 -> Tuple Function Arguments C-cC-wt
repeat (). Unfold Function Application C-cCwu

Introduce a Macro C-cC-wnm

Fold Against Macro Definition C-cCwfm

Refactorings for QuickCheck »

Process Refactorings (Beta) >

Normalise Record Expression
Partition Exported Functions
gen_fsm State Data to Record
gen_refac Refacs
gen_composite_refac Refacs
My gen_refac Refacs

My gen_composite_refac Refacs

Apply Adhoc Refactoring

Apply Composite Refactoring

Add To My gen_refac Refacs

Add To My gen_composite_refac Refacs

——(Unix) test.erl a11 18 (Erlang EXT)
New parameter name

Programing Heterogeneous Systems...

= _.is hard!

= Mainstream programming models (e.g. OpenCL, CUDA+pthreads)
are too low-level for an average programmer

= Many applications can be parallelised in more than one way

= Choosing which parallel structure to exploit is a non-trivial
problem
= Trial-and-error approach can be very costly

T il i BRR A P H R AR N A e

¥ |

Linking with OpenCL &

University
5t Andrews

= OpenCL binding for Erlang
= Basically wraps up openCL in Erlang ‘FFI’ like calls
= User required to provide an openCL kernel
= Provides GPU setup/offloading/marshalling ...
= Requires kernel parameters to be Erlang binaries
= Basically a pointer to the raw data

= https://github.com/tonyrog/cl

Linking with OpenCL

E = clu:setup(all),

{ok, Program} = clu:build source(E, "solve2"),
{ok,Kernel} = cl:create kernel (Program,
"solveKernel”)

cl:create buffer (E#cl.context, [read only],

byte size (Argument)),

cl:set kernel arg(Kernel, O,

K#kwork.argument),

Linking with OpenCL

{ok,E3} =
cl:enqueue read buffer (Kfkwork.queue,

K#kwork.omem, O, Nk, [E2]),

{ok,Bin} = cl:wait (K#kwork.e3),

Heterogeneous Patterns

Farm

Heterogeneous Patterns

Heterogeneous
Farm

<>
Heterogeneous Farms

University
5t Andrews

= New types of heterogeneous components:

= {seqCPU, fun CPUworker/1, nCPUWorkers}
= {seqGPU, fun GPUworker/1, nGPUWorkers}

= Heterogeneous Farms:

= Skel:do([{farm, {seqCPU, fun CPUworker/1, nCPUWorkers},
{seqGPU, fun GPUworker/1, nGPUWorkers}], inputs)

Heterogeneous Parallel Refactoring

= Generates calls to openCL bindings
= Uses dialyzer underneath to find the types of the kernel arguments

= Eliminates tedious and massively error-prone openCL writing

= Assumes an already supplied openCL kernel

= Adds in number GPU/CPU workers, using a static mapping
technology

(=

Ant Colony Optimisation &>

University
5t Andrews

* An ACO algorithm consists of a number of iterations in which each ant finds a
solution, partially guided by a pheromone trail.

* The pheromone trail is updated based on the best solution in each iteration.
* We use ACO to solve the Single Machine Total Weighted Tardiness Problem

* A Skel task farm and feedback skeletons are used to parallelise ACO

Find a Solution

Find a Solution

.| Decomposition & — = Collector & Pick Best
+ Emitter | Recomposition Solution

L]

Find a Solution

Find a Solution

Ant Feedback

R T R BPARAPHRASE NPT il il e

Ant Colony Optimisation

ant_colony(FName, Num_Ants, Num_lters, Num_Workers) ->
{Num_Jobs, Process_Time, Weight, Deadline, Tau} =
binary_ant_init:init(FName),
Chunk_Size = Num_Ants div Num_Workers,

Pipe = {pipe, [{farm, [{seqCPU, fun(X) -> lists:map(fun(Y) ->
binary_par_solve:find_solution(Y) end, X) end,
nCPUWorkers}],

{seq, fun(X) -> pick_update_spawn_list_lists(Num_Workers,
Chunk_Size, X) end}]},

Ant Colony Optimisation

Feedback = {feedback, [Pipe], fun ant_feedback/1},
skel:do([Feedback], [lists:duplicate(Num_Workers,
lists:duplicate(Chunk_Size,
{Num_Jobs, Process_Time, Weight,
Deadline, Tau, Num_Iters}))]).

Experimental Machine

All measurements

= 2.4GHz 24-core, dual AMD Opteron 6176 architecture
= Nvidia Tesla C2050 Fermi GPU (448 CUDA cores)

= Centos Linux 2.6.18-274.e15.

= Erlang 5.9.1 R15B01,

= Averaging over 10 runs

Parallel ACO with Skel

Speedups for Ant Colony Optimisation

[\ \ \ \ \ \
16 |- =
14 |- =
12 | =
. 10 B
ho)
= 8] +
9]
6| N
4+ N
2 N
10 N
\ \ \ \ \

No. Farm Workers

R T R T PARAPHRASE I M, aiFT T gl

GPU ACO, Refactored '

Univerrsitf
St Andrews

Pipe = {pipe, [{farm, [{seqGPU, fun(X) -> lists:map(fun(Y) ->
binary_gpu_solve:find_solution(Y) end, X) end,
NnGPUWorkers}],

{seq, fun(X) -> pick_update_spawn_list_lists(Num_Workers,
Chunk_Size, X) end}]},

GPU ACO, Refactored

find_solution_gpu(...) ->
E = clu:setup(all),
{ok,Program} = clu:build_source(E, "solve2"),
{ok,Kernel} = cl:create_kernel(Program, "solveKernel"),
Random_Seed =0,
Tabus = list_to_tuple(lists:duplicate(Num_Jobs,1)),

Kws =
map(
fun(Device) ->
{ok,Queue} = cl:create_queue(E#cl.context,Device,[]),
{ok,Local} = cl:get_kernel_workgroup_info(Kernel,Device,
work_group_size),
{ok,Freq}=...
Kws3 = map(
fun(K) ->

{ok,ProcessTimeBuffer} = cl:create_buffer(E#cl.context,[read_only],byte_size(Process_Time)),
{ok,E1} = cl:enqueue_write_buffer(K#kwork.queue,
K#tkwork.imem,
0, Nk,
K#kwork.idata, []),

ok = cl:set_kernel_arg(Kernel, 0, K#tkwork.resultsBuffer),

Global = Count,
{ok,E2} = cl:enqueue_nd_range_kernel(K#kwork.queue,
Kernel,
[Global], [K#tkwork.local],
[E1]),

K#kwork { processTimeBuffer=ProcessTimeBuffer ... }
end, Kws),
Bs = map(
fun(K) ->
{ok,Bin} = cl:wait(K#kwork.e3),
cl:release_mem_object(K#kwork.imem),
cl:release_mem_object(K#tkwork.omem),
cl:release_queue(K#kwork.queue),
Bin

end, Kws4),

GPU Results

Speedups on GPU for Ant Colony
O ptimisation

1 2 4 B 16
Nr SMs Used

30

EXaX
= |
%’
University
St Andrews

41

Heterogeneous Parallel Programming

Application 1. Identify
Initial Structure

Int main () ...
For (int | =0; | < N; i++)
f(g(x);

& we

Farm Pipeline

O Q

GPU CPU
Component Component

Heterogeneous Machine

—

\) Skeleton
Configurations

"'-'-'--'-'-'-‘--‘----------“““““““

: Profile m“‘l

Model

—

Information / -
(\ i Config. 1 Config. 2
Structured Code ; - \ 3. Filter " ﬁ
{ Cor::‘lg. 1} {Qﬁﬁg&J Using Cost % L

2. Enumerate

Config. 3

Config. 1(a) Config.
L L L L 1 L L L 1 % © © L &°+ T % T ° T T T © 0 % 0 o 0 n . ° 5 ° % ﬁ-- N
Profile

Information
5. Choose Optimal
Mapping/Configuration

(—

7. Execute

Refactorer \ /Optimal Pgrallel Cc?nﬁguratiom
with Mappings With Mappings

Int main () ...
Farm1 = Farm(f, 8, 2);
Pipe(farm1, GPU(g));

/ 6. Refactor

Application

Example: Enumerate Skeleton Configurations
for Image Convolution

Configuration | Est. runtime
rop 5.6

r|p 3.88

A(r) || p 1.60

r | Alp) 4.00

A(r) || A(p) | 0.40

Alr | p) 0.56

A(r)o A(p) | 2.00
A(r)op 2.00
roA(p) 5.60

¥ :read image file
P : process image file

R T R T i PARAPHRASE M i T i

Results on Benchmark: Image Convolution

Speedups for A(r) || A(p)

MCTS Mapping (C, G): " T 1GPU
” + 3GPUs
—— 5 GPUs
(61 O) | | (OI 3) 35 F ¢ 4 7 GPUs
- \ A "v%~~a.»—-"""-\: K
Speedup 39.12 i | %
peedup 39. & ol M A
20 7 /A
Best Speedup: 40.91 15 e,
10 -
1 4 8 12 16
No. CPU workers in A(r)

R T R T i PARAPHRASE M i T i

Adding Mapping...

Speedups for A(r) | A(p)

45 ——1 GPU
-3 GPUs

40 —a— 5 GPUs
" 7 GPUs
35

o)

= 30

s

2

v 25
20
10

1 1 8 12 16
No. CPU workers in A(r)

= The best speedup was predicted for A(r,6,0) || A(p,0, 3)

R T R T i PARAPHRASE M i T i

Adding Mapping (2)

Speedups for A(r || p)

10
9
bt
a 7
=
I 6 \
2
4
3
2
1 4 8 12 16
No. CPU Workers

= The best speedup was predicted for
A(r || p,5,5)

Pr

Adding Mapping (3)

Speedups for A(r) | p

40

30

Speedup

1 1 8 12 16
No. CPU workers in A(r)

= The best speedup was predicted for
ﬂ(‘i"‘, 4, U) ” PG

Conclusions

University
5t Andrews

= New heterogeneous skeletons for Erlang

= New Heterogeneous refactoring approach, semi-automatically
introduces openCL bindings, and skeletal configuration

= |nitial results for an ant colony optimisation
= Skeletal, farm with feedback version, 12 speedup
= GPU version, 26 speedup

R T R T i PARAPHRASE M i T i

Conclusions

University
5t Andrews

= The manycore revolution is upon us

= Computer hardware is changing very rapidly
(more than in the last 50 years)

= The megacore era is here (aka exascale, BIG data)

= Heterogeneity and energy are both important

= Most programming models are too low-level
= concurrency based
= need to expose mass parallelism

= Patterns and functional programming help with abstraction
= millions of threads, easily controlled

R T R T i PARAPHRASE M i T i

Conclusions (2)

University
5t Andrews

= Functional programming makes it easy to introduce parallelism
= (Controlled) side effects means any computation could be parallel
= Matches pattern-based parallelism
" Much detail can be abstracted

= Lots of problems can be avoided
= e.g. Freedom from Deadlock
= Parallel programs give the same results as sequential ones!

= Automation is very important

= Refactoring dramatically reduces development time
(while keeping the programmer in the loop)

= Machine learning is very promising for determining complex performance settings

L}
AP

Future Work '

University
5t Andrews

= Allow further integration into skeletons
= Aliving mixture of CPU/GPU components

= Wider range of skeletons
= Parallel workpools
= Divide-and-conquer
= Map-reduce
= BSP

= More case studies, and from different domains:
= Physics, computer algebra, ...

* |Include dynamic remapping and distributed computing environments

T il i BRR A P H R AR N A e

Funded by

l..‘n:'werrziitj.r
5t Andrews

« ParaPhrase (EU FP7), Patterns for heterogeneous multicore,
€4.2M, 2011-2014

* SCIEnce (EU FP6), Grid/Cloud/Multicore coordination -
@ Sicl!|EINICIE

e €3.2M, 2005-2012 Symbolic
" Computation
, Infrastructure for
* Advance (EU FP7), Multicore streaming “L Europe

e €2.7M, 2010-2013

* HPC-GAP (EPSRC), Legacy system on thousands of cores

e f1.6M, 2010-2014 StatArch

. ADVANCE

* Islay (EPSRC), Real-time FPGA streaming implementation
« f£1.4M, 2008-2011

* TACLE: European Cost Action on Timing Analysis e

e €300K, 2012-2015 7
:Sicsa* (", cEDEt EPS RC @g&wﬁﬁ

Some of our Industrial Connections B

Mellanox Inc. TECHNOLOGIES
Erlang Solutions Ltd

SAP GmbH, Karlsruhe PHIlI PS

BAe Systems SOLUTIONS

Selex Galileo EE’ s e b

Biold GmbH, Stuttgart

),
Philips Healthcare L= R
Software Competence Centre, Hagenberg -
: ®
Microsoft Research BIOID*® - }yflklll'yphefl
WE”-TYpEd LLC be recognized

Microsoft Research
y. “~

53

ParaPhrase Needs You!

* Please join our mailing list
and help grow our user community
" newsitems
= access to free development software
= chat to the developers
= free developer workshops
= bug tracking and fixing
= Tools for both Erlang and C++

 Subscribe at

https://mailman.cs.st-andrews.ac.uk/mailman/
listinfo/paraphrase-news

 We're also looking for open source
developers...

THANK YOU'!

http://www.paraphrase-ict.eu

http://www.project-advance.eu

@paraphrase_fp7

