\ &
—7 LN

g

N\

Taking Off with Phoenix

@scrogson / https://github.com/scrogson

Phoenix

https://github.com/phoenixframework

Phoenix is a frameworR for building modern web apps,
APl backends, and distributed systems. Written in Elixir,
you get beautiful syntax, productive tooling, and a fast

and efficient runtime.

- MV(framework.

- Familiar to those with experience in other web
frameworks similar to Ruby on Rails or Pythons Django.

- Channels for implementing realtime features.
- Easy to test.

- No compromise - high productivity and high
performance.

| hear Phoenix is pretty fast.
How fast?

Framework Throughput (req/s) Latency (ms) Consistency (o' ms)

Plug 198328.21; 0.63ms 2.22ms
Phoenxo13l | 17068594 osins Lo4ms
@ eis6ar ossms 057ms
Py | 7123603 1ggms 1417ms
Phoenix09.0-dev | 1603020 osoms 030ms
boressCuster | 9206494 1ams Lo7ms
Wi | o728 s3sms 2s2ms
Smata | 36195 ssoms 253ms
Wis | ugoes ssoms 407ms

https://gist.github.com/omnibs/e5e72b31e6bd25caf39a

You down with OTP?

Yeah you know me!

Phoenix is an OTP application that provides functionality
to your OTP application.

Building Blocks

Phoenix is the top layer of a multi-layer system designed
to be modular and flexible.

Plug - A simple abstraction for dealing with different web servers.
Cowboy - Small, fast, modular HTTP server written in Erlang.

Ecto - a DSL for writing queries and interacting with databases.

Getting Started

Installing

Installing

creating

Generating Your App

%% Sk ok % Sk K % %k X %k K % %k X % X X % X D

mix phoenix.new myapp

creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating

Generating Your App

myapp/config/config.exs
myapp/config/dev.exs
myapp/config/prod.exs
myapp/config/prod.secret.exs
myapp/config/test.exs
myapp/lib/myapp.ex
myapp/lib/myapp/endpoint.ex
myapp/test/views/error_view_test.exs
myapp/test/support/conn_case.ex
myapp/test/support/channel_case.ex
myapp/test/test_helper.exs
myapp/web/channels/user_socket.ex
myapp/web/router.ex
myapp/web/views/error_view.ex
myapp/web/web . ex

myapp/mix.exs

myapp/README . md
myapp/lib/myapp/repo.ex
myapp/test/support/model_case.ex
myapp/priv/repo/seeds.exs

Generating Your App

creating myapp/test/views/page_view_test.exs
creating myapp/web/controllers/page_controller.ex
creating myapp/web/templates/layout/app.html.eex
creating myapp/web/templates/page/index.html.eex
creating myapp/web/views/layout_view.ex

creating myapp/web/views/page_view.ex

Fetch and install dependencies? [Yn]

Generating Your App

creating myapp/test/views/page_view_test.exs
creating myapp/web/controllers/page_controller.ex
creating myapp/web/templates/layout/app.html.eex
creating myapp/web/templates/page/index.html.eex
creating myapp/web/views/layout_view.ex

creating myapp/web/views/page_view.ex

Fetch and install dependencies? [Yn]

* running npm install && node node_modules/brunch/bin/brunch build
* running mix deps.get

Generating Your App

creating myapp/test/views/page_view_test.exs
creating myapp/web/controllers/page_controller.ex
creating myapp/web/templates/layout/app.html.eex
creating myapp/web/templates/page/index.html.eex
creating myapp/web/views/layout_view.ex

creating myapp/web/views/page_view.ex

Fetch and install dependencies? [Yn]
* running npm install && node node_modules/brunch/bin/brunch build
* running mix deps.get
We are all set! Run your Phoenix application:
$ cd myapp
$ mix ecto.create
$ mix phoenix.server

You can also run your app inside IEx (Interactive Elixir) as:

$ iex -S mix phoenix.server

Generating Your App

Generating Your App

Create Your Database

Generating Your App

Generating Your App

Starting Your App

[NN E localhost:4000 & H

®. Phoenix Framework ——

—

N

Welcome to Phoenix!

Phoenix is an Elixir Web Framework targeting full-featured, fault
tolerant applications with realtime functionality.

Resources Help
e Docs e Issues
e Source o #elixir-lang on freenode IRC

e @chris_mccord

phoenixframework.org

Go to “http://www.phoenixframework.org/docs"

Server Logs

A iex -S mix phoenix.server

Erlang/OTP 18 [erts-7.1] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe]
[kernel-poll:false] [dtracel]

[info] Running Myapp.Endpoint with Cowboy on http://localhost:4000
Interactive Elixir (1.1.1) - press Ctrl+C to exit (type h() ENTER for help)

iex(1)> 25 Nov 23:57:09 - info: compiled 5 files into 2 files, copied 3 in
2284ms

[info]l GET /

[debug] Processing by Myapp.PageController.index/2
Parameters: %{}
Pipelines: [:browser]

[info] Sent 200 in 889us

File Structure

File Structure

File Structure

File Structure

File Structure

Running the Tests

Mix Tasks

A mix help | grep phoenix
mix phoenix.digest

mix phoenix.gen.channel
mix phoenix.gen.html
mix phoenix.gen.json
mix phoenix.gen.model
mix phoenix.gen.secret
mix phoenix.new

mix phoenix.routes

mix phoenix.server

Digests and compress static files
Generates a Phoenix channel

Generates files for an HTML based resource
Generates files for a JSON based resource
Generates an Ecto model

Generates a secret

Create a new Phoenix v1.0.3 application
Prints all routes

Starts applications and their servers

H HF H H HF H H HF A

Plug

https://github.com/elixir-lang/plug

A specification for constructing composable modules to
build web applications. Plugs are reusable modules or
functions built to that specification.

Plugs can be written to handle almost anything, from
authentication to parameter pre-processing, and
rendering.

Provides adapters to HTTP servers which will ultimately
deliver application content to our users.

The Plug Specification

There are two Rind of plugs:

- function plugs
- module plugs

Function Plugs

A function plug is any function that receives a
connection and a set of options and returns a
connection. Its type signature must be:

Function Plug Example

Module Plugs

A module plug is an extension of the function plug.
It is a module that must export:

'init/1 - takes a set of options and initializes it.
‘call/2" - takes the connection and options, returns
the connection

The result returned by “init/1" is passed as second argument to ‘call/2".

Module Plug Example

defstruct adapter:

assigns:
before_send:
body_params:
cookies:
halted:

host:

method:
owner:
params:
path_info:
port:
private:
query_params:
query_string:
peer:
remote_1ip:
reg_cookies:
reg_headers:
request_path:
resp_body:
resp_cookies:
resp_headers:
scheme:
script_name:
secret_key_base:
state:
status:

{Plug.Conn, nil},

w3,
L],

%Unfetched{aspect:
%Unfetched{aspect:

false,

"www.example.com”,

”GET” ,
nil,

%Unfetched{aspect:

L1,
0

w3,

%Unfetched{aspect:

nn
)

nil,
nil,

%Unfetched{aspect:

L1,

nn
)

nil,

w3,

[{"cache-control”,

:http,
L1,
nil,
:unset,
nil

"max-age=0, private,

:body_params},
:cookies},

:params},

:query_params},

:cookies},

must-revalidate”}],

Request Fields

These fields contain request information:

* % % %

*

*

*
*

‘host' - the requested host as a binary, example: '"www.example.com”®

‘method' - the request method as a binary, example: ‘"GET"'

path_info' - the path split into segments, example: ‘["hello”, "world”]®
script_name' - the initial portion of the URL's path that corresponds to the
application routing, as segments, example: ["sub”, "app”"].

‘request_path' - the requested path, example: ‘/trailing/and//double//slashes/*
‘port' - the requested port as an integer, example: '80°

‘peer' - the actual TCP peer that connected, example: ‘{{127, 0, 0, 13}, 12345}".
Often this is not the actual IP and port of the client, but rather of a load-
balancer or request-router.

‘remote_ip' - the IP of the client, example: ‘{151, 236, 219, 228}'. This field is
meant to be overwritten by plugs that understand e.g. the ‘X-Forwarded-For®
header or HAProxy's PROXY protocol. It defaults to peer’'s IP.

‘reg_headers' - the request headers as a list, example:

‘[{"content-type”, "text/plain”}]®

‘scheme' - the request scheme as an atom, example: ‘:http’

‘query_string' - the request query string as a binary, example: '"foo=bar"®

\

\

Fetchable Fields

The request information in these fields is not populated until it is fetched
using the associated 'fetch_' function. For example, the ‘cookies' field uses
‘fetch_cookies/2".

If you access these fields before fetching them, they will be returned as
‘Plug.Conn.Unfetched' structs.

‘cookies'- the request cookies with the response cookies

query_params' - the request query params

params' - the request params. Usually populated by a plug, like ‘Plug.Parsers’
reg_cookies' - the request cookies (without the response ones)

x
%
%
*

\

Response Fields

These fields contain response information:

* ‘resp_body' - the response body, by default is an empty string. It is set
to nil after the response is set, except for test connections.

* ‘resp_charset' - the response charset, defaults to "utf-8"

* ‘resp_cookies' - the response cookies with their name and options

* ‘resp_headers' - the response headers as a dict, by default ‘cache-control®
is set to '"max-age=0, private, must-revalidate

* ‘status' - the response status

n\

Furthermore, the ‘before_send' field stores callbacks that are invoked
before the connection is sent. Callbacks are invoked in the reverse order
they are registered (callbacks registered first are invoked last) in order
to reproduce a pipeline ordering.

Connection Fields

‘assigns' - shared user data as a dict

‘owner' - the Elixir process that owns the connection

‘halted' - the boolean status on whether the pipeline was halted
‘secret_key_base' - a secret key used to verify and encrypt cookies.

the field must be set manually whenever one of those features are used.
This data must be kept in the connection and never used directly, always
use ‘Plug.Crypto.KeyGenerator.generate/3" to derive keys from it

* ‘state’ - the connection state

* % % %

The connection state 1s used to track the connection lifecycle. It starts
as ':unset' but is changed to ':set' (via ‘Plug.Conn.resp/3') or ‘':file’
(when invoked via ‘Plug.Conn.send_file/3'). Its final result is

‘:sent’ or ':chunked' depending on the response model.

Private Fields

These fields are reserved for libraries/framework usage.

x ‘adapter' - holds the adapter information in a tuple
* ‘private’ - shared library data as a dict

Plugs in Phoenix

- Endpoint
- Router

- Controllers

Endpoint

The endpoint is the boundary where all requests to your web
application start. It is also the interface your application provides to
the underlying web servers.

Overall, an endpoint has three responsibilities:

- provides a wrapper for starting and stopping the endpoint as part of
a supervision tree;

- defines an initial plug pipeline where requests are sent through;

- hosts web specific configuration for your application.

Endpoint

Router

The router provides a set of macros for generating routes that

dispatch to specific controllers and actions. Those macros are
named after HTTP verbs.

Router

Router

Leverages the BEAM's pattern-matching at run-time

Router

This

Compiles to this

A mix phoenix.routes

page_path
room_path
room_path
room_path
room_path
room_path
room_path

room_path
room_user_path
room_user_path
room_user_path
room_user_path
room_user_path
room_user_path

room_user_path

GET
GET
GET
GET
GET
POST
PATCH
PUT
DELETE
GET
GET
GET
GET
POST
PATCH
PUT
DELETE

/
/rooms
/rooms/

Router

Mix Task

c1d/edit

/rooms/new

/rooms/
/rooms

/rooms/:
/rooms/:
/rooms/:
/rooms/:
/rooms/:
/rooms/:
/rooms/:
/rooms/:
/rooms/ :
/rooms/ :
/rooms/ :

:1d

id

id

id

room_id/users
room_id/users/:1id/edit
room_id/users/new
room_id/users/:1d
room_id/users
room_id/users/:1d
room_id/users/:1d
room_id/users/:1d

Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.
Myapp.

PageController
RoomController
RoomController
RoomController
RoomController
RoomController
RoomController
RoomController
RoomController
UserController
UserController
UserController
UserController
UserController
UserController
UserController
UserController

: 1ndex
: 1ndex
cedit
:hew

: show
:Create
:update
:update
:delete
: 1ndex
cedit
:hew

: show
:Create
:update
:update
:delete

Pipelines

Pipelines group functions together
to handle common tasks.

send_resp(controller(router(
endpoint(connection))))

handle_request(Conn) ->
Conn1 = endpoint(Conn),
Conn2 = router(Connl),
Conn3 = controller(Conn2),
send_resp(Conn3).

cat ~/.ssh/id_rsa.pub | pbcopy

connection

|> endpolnt
> router

> controller
> send_resp

Router Pipelines

Router Pipelines

Generators

A mix help | grep phoenix.gen
| .channel # Generates

miXx
mix
mix
mix
mix

phoenix

phoenix.
phoenix.

phoenix

phoenix.

.gen
gen
gen
.gen
gen

.html
.json
.model
.secret

Generates
Generates
Generates
Generates

a Phoenix channel

files for an HTML based resource
files for a JSON based resource
an Ecto model

a secret

A
x*
x*
x*
x*
x*
x*
x*
x*
x*
x*
x*

Generate a Post resource

mix phoenix.gen.html Post posts title body:text

creating
creating
creating
creating
creating
creating
creating
creating
creating
creating
creating

web/controllers/post_controller.ex
web/templates/post/edit.html.eex
web/templates/post/form.html.eex
web/templates/post/index.html.eex
web/templates/post/new.html.eex
web/templates/post/show.html.eex
web/views/post_view.ex
test/controllers/post_controller_test.exs
priv/repo/migrations/20151130222956_create_post.exs
web/models/post.ex
test/models/post_test.exs

Add the resource to your browser scope in web/router.ex:

resources "/posts”, PostController

Remember to update your repository by running migrations:

$ mix ecto.migrate

Add your routes

Migrate the Database

A mix ecto.migrate

Compiled web/models/post.ex

Compiled web/views/page_view.ex

Compiled web/views/layout_view.ex

Compiled web/views/error_view.ex

Compiled web/controllers/page_controller.ex
Compiled web/controllers/post_controller.ex
Compiled web/views/post_view.ex

Compiled web/router.ex

Compiled lib/myapp/endpoint.ex

Generated myapp app

23:37:07.095 [info] == Running Myapp.Repo.Migrations.CreatePost.change/0 forward
23:37:07.096 [info] create table posts

23:37:07.113 [info] == Migrated in 0.1s

eve < > @M localhost:4000/posts ¢

k‘a\ Phoenix Framework et Sared

—

~N

Listing posts

Title Body

New post

E

0O <

>

D

localhost:4000/posts/new

&
!

E\;\ Phoenix Framework

New post

Title

Get Started

Body

Back

localhost:4000/posts

=

B Phoenix Framework

—

~N

New post

Oops, something went wrong! Please check the errors below:

« Title can't be blank
+ Body can't be blank

Title

Get Started

Body

Back

]FOOO

lA

M

&

localhost:4000/posts/new

E;\ Phoenix Framework

New post

Title

Get Started

‘ Hallo Berlin!

Body

| hope you all enjoyed Erlang Factory Lite Berlin 2015!

Back

localhost:4000/posts

=

B Phoenix Framework

—

~N

Post created successfully.

Listing posts

Title Body

Hallo Berlin! | hope you all enjoyed Erlang Factory Lite Berlin 2015!

New post

Get Started

sron o (23

Controllers

Controller Pipelines

GET /posts

List all posts

GET /posts/id

Show a single post

GET /posts/new

Show a form to create a new post

POST /posts

Create a new post

GET /posts/:id/edit

Find a post and render an edit form

PUT/PATCH /posts/:id

Update a post

DELETE /posts/:id

Delete a post

Views & Templates

- Views render templates

- Views serve as a presentation [ayer

- Module hierarchy for shared context
- Templates are precompiled into views

- EEx & Haml engine support

Template

Channels

Channels allow you to route pub/sub events to channel
handlers in your application. By default, Phoenix
supports both WebSocRet and LongPoller transports.

. WebSocket / PubSub Abstraction

- Similar to Controllers, but bi-directional
- Handle socket events and broadcast

- phoenixs - JavaScript client

UserSochet

UserSochet

Room(Channel

Room(Channel

Room(Channel

Phoenix.js

www.phoenixframework.org

&‘%Phoenix Framework GUIDES DOCS COMMUNITY GITHUB NEWS Search@d 100~

Productive. Reliable. Fast.

A productive web framework that

does not compromise speed and maintainability

Build APIs, HTML 5 apps & more

See our guides

HOW IS PHOENIX DIFFERENT? BUILDING THE NEW WEB BATTLE-PROVEN TECHNOLOGY

Channels provide real-time streaming within Phoenix leverages the Erlang VM ability to

http://phoenixframework.org

Danke!

(@scrogson

FFFFFFF

