"LET IT CRASH” MEETS “IT SHOULDN'T CRASRH”

DESIGN BY CONTRACT IN ELIXIR

@GUILLEIGUARAN @QELBASANCHEZM

GUILLERMO EFLBA SANCHEZ
I GUARAN SUAREZ MARQUEZ
RIDE.COM RIDE.COM

##ONELESSCAR

http://ride.com
http://ride.com

HOW DID WE GET HERE

BUGS AND CRASHES

CLICK SOME |8 '-
NOW BUTTONS AND | - IN MY DEFENSE,

WHAT SEE WHAT R - THAT HARDLY
DOI HAPPENS YOU | | | . EVER HAPPENS.

DO7 CAN'T HURT
ANY THING.

D

v R TY
29 S
Aoy

=R A

e .T..? M\
¢

..
-
-~
oﬂ;... rla? d -
g . : .
i
y » . ﬁ ' -
ety . g > 2 . > SR
b 2 . . : - LE . i
i i - T .- f
- . . - » x ~ .
. . . .
AR e, : :
ST s A et o B , 2 A
R W S T - 2V ; .
SN . rd L et
. oy ¥ e S R . - &
P SRR iy € .0 \
- N R GINREL 5 S \
L St - & 3 \ ..
... Cn o - \

: so.u.‘..m.“.i\hu-..‘ T
X SIAMER BT (o L N

\

seum

L N
L)

" ™Mu

K N (A 7?

DID YOI

ARIANE S

- THE SOFTWARE
NUMBER INTO A 16

CATCH THE EXCEP?

FLIGHT 5071

- THE ARIANE 5'S FASTER ENGINES EXPLOITED A BUG
THAT WAS NOT FOUND IN PREVIOUS MODELS.

HAD TRIED TO CRAM A 64-BIT
-BIT SPACE.

- THERE WAS NO EXPLICIT EXCEPTION HANDLER TO

TON, SO IT FOLLOWED THE USUAL

FATE OF UNCAUGF

COMPUTERS, HENC

"Ariane 501 Cluster" by Phrd/de:user:Stahlkocher - Own work. Licensed under CC BY-SA 3.0

T EXCEPTIONS AND CRASHED THE

ENTIRE SOFTWARE, HENCE THE ONBOARD

ETHE MISSION

YOU CAN'T

BLAME MANAGEMENT

YOU CAN'T

BLAME THE LANGUAGE

YOU CAN'T

BLAME THE IMPLEMENTATION

YOU CAN'T

BLAME TESTING

YOU HAVE TO BLAME

THE REUSE SPECIFICATION

The requirement that the horizontal
bias should fit on 16 bits was in fact
stated in an obscure part of a mission document.
But it was nowhere to be found in
the code itselt!

A LITTLE BIT OF THEORY

HISTORY

The pre- and postcondition
technique originated with the work ot
Tony Hoare, whose 1969
Communications of the ACM paper
described program semantics using
such assertions.

The term was coined by Bertrand
Meyer in connection with his design

of the Eiftel programming language

DAVEiffel Software

Design-by-Contract™

Design by contract has its roots in
work on formal verification, formal
specitication and Hoare logic.

BASICS OF HOARE
LOGIC

Formal reasoning about program correctness using pre- and postconditions

1P} ¢ dQj

Hoare Logic is at the core of the deductive approach of the DbC.

"Design by Contract” falls under Implementation/Design

Typically unit tests are used to
verify that the software works
correctly under certain
example cases but hardly can
be used to detect all possible

edge cases during
development.

Design by contract (DbC) is a
software correctness
methodology that document
and programmatically assert
the change in state caused by
a piece of a program

IN ARTANE'S CASE

convert (horizontal bias:
DOUBLE) : INTEGER is

Where the precondition FEAnAEe .
| horizontal bias
(require...) states clearly (= Maximum bias

and precisely what the do

input must satisfy to be
ensure

acceptable.

end

= iffel Version

WHAT IS DESIGN BY
CONTRACT?

Each party benefits and accepts
obligations

One party's benefits are the other
party's obligation

't is described so that both parties
understand what would be
guaranteed without saying how.

STRUCTURE OF A CONTRACT

PRECONDITION (REQUIRES CLAUSE)

POSTCONDITION (ENSURES CLAUSE)

It its precondition is true when a method is called, then the method will terminate
return to the calling program — and the postcondition will be true when it does

return.

It its precondition is not true when a method is called, then the method may do

nothing

put (x: ELEMENT; key: STRING) 1is

-—- Insert x so that it will be retrievable through key.

require

count <= capacity

not key.empty
do

... Some insertion algorithm ...
ensure

has (Xx)

item (key) = x

count = old count + 1

end

httos://www.eiffel.com/values/desian-by-contract/introduction/

https://www.eiffel.com/values/design-by-contract/introduction/

HOW CAN IT HELP?

"When quality is pursued, productivity follows."

-K. FUJINO
VICE PRESIDENT OF NEC CORPORATION'S C&C SOFTWARE DEVELOPMENT
GROUP

AND ALSO WE LOOK FOR...

RELIABILITY

Correctness

Robustness

- Assertions (preconditions and
postconditions
in particular) can be automatically
turned on during testing

- Assertions can remain turned on
during
execution, triggering an exception

if violated
- Most important, assertions are a

orime component of the software
and its automatically produced
documentation

LANGUAGE
SUPPORT

There are several implementations o

DbC libraries for some languages

And languages with native s ‘

Software

AND NOW WITH ELIXIR

METAPROGRAMMING
IN ELIXIR

Book by Chris McCord - O'Reilly

- SS9IdXe
ewibeid

G

N

\|

Metaprogrammin
F{programming

Write Less Code,
Get More Done
(and Have Fun!)

Chris McCord

(author of the Phoenix framework) |
. | A
Edited by Jacquelyn CartCims ' " —uer

= -

" Fogrammers
MACROS RULES

Metaprogrammin
F{programming

Write Less Code,
Get More Done
(and Have Fun!) |

Rule 1: Don't write
Macros

Book by Chris McCord - O'Reilly

Chris McCord

(author of the Phoenix framework)

Edited by Jacquelyn Cart@hmm. * =

" Fogrammers

MACROS RULES

Metaprogrammin
F{programming

Write Less Code,
Get More Done
(and Have Fun!) |

Rule 2: Use Macros
Gratuitously

Book by Chris McCord - O'Reilly

Chris McCord

(author of the Phoenix framework) |
. | A
Edited by Jacquelyn CartChimms ' " —er

MACROS

A macro is code that writes code
Many constructs in Elixir are macros (def, if, unless, detmodule,...)

Elixir code runs at compile time and can be used to manipulate
language AST.

" Fogrammers

Metaprogrammin
F{programming

Write Less Code,
Get More Done
(and Have Fun!)

METAPROGRAMMING
ELIXIR BY CHRIS MCCORD

Book by Chris McCord - O'Reilly

Chris McCord

(author of the Phoenix framework) |
. | A
Edited by Jacquelyn CartCims ' " —uer

e

BACK TO DBC...

We will use Elixir macros to extend the language adding support for
basic DoC constructs.

We will tag existing functions with “requires” and “ensures” tags.

Macros will manipulate function body to insert precondition and
oostconditions inside of functions.

WHAT WE HAD TO DO

defmodule Math do
use Contracts

requires num >= 0
ensures result >= 0 && :math.pow(result, 2) <= num && :math.pow(result + 1, 2) >= num
def sqrt(num) do
result = :math.sqrt(num)
end
end

DEMO

HTTPS://GITHUB.COM/
EPSANCHEZMA/ELIXIR-CONTRACTS

https://github.com/epsanchezma/elixir-contracts

FURTHER WORK

Generate test-cases from Contracts

Add configuration options to turn-on/off contracts in development anao
oroduction

Generate automated documentation from contracts

Generate QuickCheck tests

TO CONCLUDE

Design by contract does not replace regular testing strategies
Contracts add an extra grade of reliability

It's not a silver bullet

REFERENCES

Ariane’s case: http://se.int.ethz.ch/~meyer/publications/computer/ariane.pdf

DbC History: http://c2.com/cgi/wiki?DesignByContract

Hoare Logic: https://www.cs.cmu.edu/~aldrich/courses/654-spQ//slides//-
hoare.pdf

DbC: http://ansymore.uantwerpen.be/system/tiles/uploads/courses/SE3BAC/
06DesignContract.pdf, http://web.cse.ohio-state.edu/software/2221/web-sw1/
extras/slides/09.Design-by-Contract.pdf

Examples: https://www.eiffel.com/

http://se.inf.ethz.ch/~meyer/publications/computer/ariane.pdf
http://c2.com/cgi/wiki?DesignByContract
https://www.cs.cmu.edu/~aldrich/courses/654-sp07/slides/7-hoare.pdf
http://ansymore.uantwerpen.be/system/files/uploads/courses/SE3BAC/06DesignContract.pdf
http://web.cse.ohio-state.edu/software/2221/web-sw1/extras/slides/09.Design-by-Contract.pdf
https://www.eiffel.com/

o s
@
o %‘cf_ 'ﬁ_ "‘.

of gt g

>

