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Distributed Architectures 
A node is the smallest executable standalone unit 
consisting of a running instance of the Erlang runtime 
system. 
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STEPS EVOLVING AROUND DISTRIBUTION 

1.  Split up your system's functionality 
into manageable, stand-alone 
nodes. 

2.  Choose a distributed architectural 
pattern. 

3.  Choose the network protocols your 
nodes, node families, and clusters 
will use when communicating with 
each other. 

4.  Define your node interfaces, state 
and data model. 
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Systems That Never 
Stop 
You need at least two computers to make a fault 
tolerant system. 
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Sharing Data 
You have at least two computers to make a fault tolerant 
system, you need to share state and data. 
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STEPS EVOLVING AROUND AVAILABILITY, 
CONSISTENCY & RELIABILITY 

1.  For every interface function in your 
nodes, you need to pick a retry 
strategy. 

2.  For all your data and state, pick 
your sharing strategy across node 
families, clusters and types, taking 
into consideration the needs of 
your retry strategy. 

5. 

6. 
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Scaling Out 
Distribute for scale and replicate for availability. 
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- CAPACITY PLANNING - 

Capacity planning is the design phase which guarantees 
that your system can withstand the load it was built to 
handle, and with time, scaling to handle increased 
demand. 
 
▸  No single point of failure  
▸  Cluster blueprint for scalability 
▸  Load Regulation 
▸  Back Pressure 
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Monitoring and 
Preemptive Support 
With the right tools and approach, the five nines once reserved 
for Telecom systems are now easily attainable in whatever other 
vertical for which you might be developing software. 
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1.  Split up your system's functionality 
into manageable, stand-alone 
nodes. 

2.  Decide what distributed 
architectural pattern you are going 
to use. 

3.  Decide what network protocols 
your nodes, node families and 
clusters will use when. 
communicating with each other. 

4.  Define your node interfaces, state 
and data model. 

5.  For every interface function in your 
nodes, you need to pick a retry 
strategy. 

 
 
 
 
 

1.  For all your data and state, pick 
your sharing strategy across node 
families, clusters and types, taking 
into consideration the needs of 
your retry strategy. 

2.  Reiterate through steps 1, 2, 3, 4,  
3.   & 6 until you have the trade-offs 

which suit your specification. 
4.  Design your cluster blueprint, 

looking at node ratios for scaling up 
and down. 

5.  Indentify where to apply back- 
pressure and load regulation. 

6.  Define your O&M approach, 
defining system and business 
alarms, logs and metrics.  
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THANK YOU! 
Any questions? 
francesco@erlang-solutions.com 
www.erlang-solutions.com  
@francescoC 
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50% off the Early Release 
40% off the printed copy 


