
www.erlang-solutions.com

Concurrency + Distribution =
Availability + Scalability

Francesco Cesarini
francesco@erlang-solutions.com
www.erlang-solutions.com
@francescoC

www.erlang-solutions.com

Ch 13: Node Architecture
Chapter 13

www.erlang-solutions.com

Chapter 13
Ch 13: Distributed Architectures
Ch 14: Systems That Never Stop
Ch 15: Scaling Out
Ch 16: Monitoring and Preemptive
 Support

www.erlang-solutions.com

Distributed Architectures
A node is the smallest executable standalone unit
consisting of a running instance of the Erlang runtime
system.

www.erlang-solutions.com

Web Server

Business
Logic

Database

Front-end Node

Logic Node

Service Node

Clients Node
Types

www.erlang-solutions.com

Fully
Meshed

www.erlang-solutions.com

Dynamo

www.erlang-solutions.com

Dynamo
0 1*2^160/64 2*2^164/64 3*2^164/64 64 4*2^164/64 63*2^164/64 2^160

Vnode 1 Vnode 2 Vnode 3 Vnode 4 Vnode 64

Erlang Node 1
vnode 1,17,33,49

Erlang Node 2
vnode 2,18,34,50

Erlang Node 16
vnode 16,32,48,64

hash(SessionId1) hash(SessionId2)

Key Range

Vnodes

Erlang Nodes

………

…

www.erlang-solutions.com

Dynamo
Logic	

Logic

Logic

Logic

Service

Service

Service

Logic

Service

Service

Web	

Web	

Web	

Web	

Logic

www.erlang-solutions.com

Dynamo
Logic

Logic

Service

Service Logic Service

Service

Service

Service

Service Service Logic

www.erlang-solutions.com

Service
Bus

Logic

Service

Service

Service

Web

Logic

Service Bus

Logic

Web

Web Web

www.erlang-solutions.com

Peer to
Peer

Logic

Logic
Logic

Logic

Logic

Logic

Logic

www.erlang-solutions.com

Peer to
Peer Logic

Logic

Logic

Logic

Logic

Logic

Front-
End

Front-
End

Front-
End

Front-
End

Logic

www.erlang-solutions.com

Clients Networking

DMZ

Business
Logic

Web Server

www.erlang-solutions.com

Networking

DMZ

IMAP Server

Business
Logic

Database

Email Clients

www.erlang-solutions.com

STEPS EVOLVING AROUND DISTRIBUTION

1.  Split up your system's functionality
into manageable, stand-alone
nodes.

2.  Choose a distributed architectural
pattern.

3.  Choose the network protocols your
nodes, node families, and clusters
will use when communicating with
each other.

4.  Define your node interfaces, state
and data model.

www.erlang-solutions.com

Systems That Never
Stop
You need at least two computers to make a fault
tolerant system.

www.erlang-solutions.com

Fault
Tolerance

Web

Logic

Client
Request

Request

Web

Client
Request

Request Error/Timeout

Error

Logic

www.erlang-solutions.com

Resilience

Web

Logic

Client
Request1

Client
Request2

Request2 Reply

Reply

Logic

Error

Web

www.erlang-solutions.com

Reliability
Client

Request

Request

Request

Web

Logic

Client
Request

Request

Request

Client
Reply

Reply

Reply

Web

Logic Logic

Load Balancer

Web Web

Logic

Load Balancer Load Balancer

Web Web

www.erlang-solutions.com

Sharing Data
You have at least two computers to make a fault tolerant
system, you need to share state and data.

www.erlang-solutions.com

Share
Nothing

 Client1 Client2
Login

Login

Login

Request

Request

Request

Login

Login Login

Login

Client1 Client1 Unknown
session

Login
Unknown
session

Unknown
session

Load Balancer Load Balancer Load Balancer

Logic

Web

Logic

Web Web

Logic

Web

Logic

Session1 Session2 Session2
Session1
Session2

Web Web

www.erlang-solutions.com

Share
Something

Logic

Web	

Logic

Load Balancer

Client
Buy book

Buy

Buy

Session1

Web	 Web	

Logic

Load Balancer

Client

Buy train set

Session1
train set

Buy

Buy

Session1
book

Web	

www.erlang-solutions.com

Share
Everything

Logic

Web

Logic

Load Balancer

Client
Buy book

Buy

Buy

Session1
book

Session1
book

Web

Logic

Load Balancer
Buy train set

Session1
book
train set

Buy

Logic

Web Web

Logic

Remove book

Session1
train set

Session1
train set

Remove

Remove Buy

Web Web

Load Balancer

www.erlang-solutions.com

Network
Partitions

Logic Logic

Session1

book

Session1

train set

Logic Logic

Session1

train set
book

Session1

www.erlang-solutions.com

Retry
Strategy

Web

Logic

Client

Request Reply

Logic

Web

Logic

Client

Request

Reply

Logic

Request Request

1 2

{duplicate, Reply}

www.erlang-solutions.com

Trade-offs

Availability

C
on

si
st

en
cy

exactly
once at least

once at most
once

Availability
R

el
ia

bi
lit

y share
everything share

something share
nothing

Recovery Strategy Sharing Data

www.erlang-solutions.com

STEPS EVOLVING AROUND AVAILABILITY,
CONSISTENCY & RELIABILITY

1.  For every interface function in your
nodes, you need to pick a retry
strategy.

2.  For all your data and state, pick
your sharing strategy across node
families, clusters and types, taking
into consideration the needs of
your retry strategy.

5.

6.

www.erlang-solutions.com

Scaling Out
Distribute for scale and replicate for availability.

www.erlang-solutions.com

Client

Server

Scaling
Vertically

Client Client Client

www.erlang-solutions.com

Scaling
Horizontally

Logic
Node

Logic
Node

Logic
Node

web
server

web
server

web
server

web
server

web
server

web
server

web
server

web
server

www.erlang-solutions.com

Trade-offs

Scalability

C
on

si
st

en
cy

at most
once at least

once only
once

Scalability
A

va
ila

bi
lit

y share
everything share

something share
nothing

Recovery Strategy Sharing Data

www.erlang-solutions.com

Capacity
Planning

www.erlang-solutions.com

Capacity
Planning

www.erlang-solutions.com

- CAPACITY PLANNING -

Capacity planning is the design phase which guarantees
that your system can withstand the load it was built to
handle, and with time, scaling to handle increased
demand.

▸  No single point of failure
▸  Cluster blueprint for scalability
▸  Load Regulation
▸  Back Pressure

www.erlang-solutions.com

Monitoring and
Preemptive Support
With the right tools and approach, the five nines once reserved
for Telecom systems are now easily attainable in whatever other
vertical for which you might be developing software.

www.erlang-solutions.com

1.  Split up your system's functionality
into manageable, stand-alone
nodes.

2.  Decide what distributed
architectural pattern you are going
to use.

3.  Decide what network protocols
your nodes, node families and
clusters will use when.
communicating with each other.

4.  Define your node interfaces, state
and data model.

5.  For every interface function in your
nodes, you need to pick a retry
strategy.

1.  For all your data and state, pick
your sharing strategy across node
families, clusters and types, taking
into consideration the needs of
your retry strategy.

2.  Reiterate through steps 1, 2, 3, 4,
3.  & 6 until you have the trade-offs

which suit your specification.
4.  Design your cluster blueprint,

looking at node ratios for scaling up
and down.

5.  Indentify where to apply back-
pressure and load regulation.

6.  Define your O&M approach,
defining system and business
alarms, logs and metrics.

www.erlang-solutions.com

1.  Split up your system's functionality
into manageable, stand-alone
nodes.

2.  Decide what distributed
architectural pattern you are going
to use.

3.  Decide what network protocols
your nodes, node families and
clusters will use when.
communicating with each other.

4.  Define your node interfaces, state
and data model.

5.  Split up your system's functionality
into manageable, stand-alone
nodes.

6.  For all your data and state, pick
your sharing strategy across node
families, clusters and types, taking
into consideration the needs of
your retry strategy.

7.  Reiterate through steps 1, 2, 3, 4, 5
& 6 until you have the trade-offs
which suit your specification.

8.  Design your cluster blueprint,
looking at node ratios for scaling up
and down.

9.  Indentify where to apply back-
pressure and load regulation.

10. Define your O&M approach,
defining system and business
alarms, logs and metrics.

www.erlang-solutions.com

THANK YOU!
Any questions?
francesco@erlang-solutions.com
www.erlang-solutions.com
@francescoC

Discount Code: authd
50% off the Early Release
40% off the printed copy

