Robert Virding

Principle Language Expert
at Erlang Solutions Ltd.

Erlang Solutions Ltd.

Multi-lingual Erlang

é)‘[ﬂg © 1999-2015 Erlang Solutions Ltd.

We are great believers in:

e No language/system is good at everything
e Right tool for the job

&M © 1999-2015 Erlang Solutions Ltd.

Overview

e Properties of the BEAM
e What languages?

e Basic Tools

e “Native” languages

e ‘Non-native” languages
e External systems

e Which one?

é@&lg © 1999-2015 Erlang Solutions Ltd,

What IS the BEAM?

A virtual machine to run
Erlang

W © 1999-2015 Erlang Solutions Ltd.

Properties of the Erlang system

e Lightweight, massive concurrency

e Asynchronous communication

e Process isolation

e Error handling

e Continuous evolution of the system

e Soft real-time

e Support for introspection and monitoring

These we seldom have to directly worry about in a
language, except for receiving messages

W © 1999-2015 Erlang Solutions Ltd,

Properties of the Erlang system

e Immutable data

e Pattern matching

e Functional language

e Predefined set of data types
e Modules

e No global data

These are what we mainly “see” directly in our
languages

W © 1999-2015 Erlang Solutions Ltd.

Adding “new” datatypes

e Erlang has records!
e We have to fake it

— use existing datatype, tuple
— special format, record name as first element

— special syntax and libraries to create and recognise
the new “type”

W © 1999-2015 Erlang Solutions Ltd.

What languages?

e Anything written in another language

— Config files
— DSLs
— Other “languages”

é)‘[ﬂg © 1999-2015 Erlang Solutions Ltd.

Basic tools

leex - lexical scanner generator

yecc — parser generator

syntax tools - for building erlang code
XML parsers (xmerl)

Erlang compiler (of course)

W © 1999-2015 Erlang Solutions Ltd,

NEW SKIN FOR THE
OLD CEREMONY

New Skin for the Old Ceremony

e Languages which keep the basic Erlang execution
model and data types

— New syntax
— Different “packaging”

e Elixir

e LFE (Lisp Flavoured Erlang)

W © 1999-2015 Erlang Solutions Ltd. 1

New Skin for the Old Ceremony

NEW libraries OTP
NEW OTP

Erlang
ERLANG BEAM

e The basic properties of these languages are based on the
properties of the Erlang and the Erlang VM

e Make full use of the Erlang/OTP libraries

W © 1999-2015 Erlang Solutions Ltd. 12

555555555

LFE (Lisp Flavoured Erlang)

The goal was:
e Provide lots of lisp goodies

— real homoiconicity and macros (yay!)

e Seamlessly interact with vanilla Erlang/OTP

— be able to freely mix vanilla code and LFE code
e Small core language
e Same speed as vanilla Erlang

W © 1999-2015 Erlang Solutions Ltd.

LFE (Lisp Flavoured Erlang)

= modify the language to fit with Erlang/OTP

— no mutable data
— only have standard Erlang data types
— Erlang style records
— Erlang style modules and functions
— no functions with variable number of arguments
— macros are only compile-time
— Lisp-2 (instead of Lisp-1)

— is as fast as vanilla Erlang

W © 1999-2015 Erlang Solutions Ltd.

Elixir

e “Elixir is a dynamic, functional language designed
for building scalable and maintainable
applications.”

e “Elixir is influenced by Ruby”
— “Elixir is NOT Ruby on the Erlang VM”

e Elixir has meta programming capabilities by
macros

— they cannot change the syntax

e Many libraries and interfaces standardised and
rewritten

W © 1999-2015 Erlang Solutions Ltd, 5

Elixir - “new” datatypes

e Elixir has records but seldom used
e Elixir has structs
e We have to fake it

e use existing datatype, map

e special format special key * _struct_ ’ with value of
struct name

e Special syntax and libraries to create and recognise
the new “type”

é)‘[ﬂg © 1999-2015 Erlang Solutions Ltd.

Non-native languages

e Languages which are not just basic Erlang

— different semantics
— non-Erlang datatypes
— non-Erlang handling of data

e Erlog (prolog)
e Luerl (Lua)

W © 1999-2015 Erlang Solutions Ltd.

Erlog

e Standard prolog, at least a strict subset

e Completely different semantics to Erlang

— backtracking
— logical variables
— unification

e Good mapping between Erlog <-> Erlang data
structures

— except for logical variables

W © 1999-2015 Erlang Solutions Ltd.

Luerl

e Implements standard Lua 5.2

e Luais

— Simple, rather neat little imperative language

Dynamic language
Lexically scoped
Mutable variables/environments/global data

— Common scripting language in games

SOLUTIONS

© 1999-2015 Erlang Solutions Ltd.

Luerl - Lua datatypes

e nil

e booleans

e numbers (floating point)

® strings

e mutable, global key-value tables

— which it uses as tables/arrays/lists/kitchen sink
— updates are visible everywhere

W © 1999-2015 Erlang Solutions Ltd.

20

External systems

Erlang ports

— linked-in drivers

NIFs (Natively Implemented Functions)

C-nodes (distributed Erlang)

UDP/TCP

© 1999-2015 Erlang Solutions Ltd.

21

Erlang ports

e Interface to the outside world
e Oldest mechanism
e Resemble processes

— message based interface
— error handling

e Fail-safe
e Byte streams

— support for packets

e Support for en-/decoding erlang data structures

W © 1999-2015 Erlang Solutions Ltd.

22

Erlang ports

/* echo.c x/

#include <stdio.h>
#define BUFFER_LENGTH 80

int main() {
char line[BUFFER_LENGTH];

while (1) {
if (fgets(line, BUFFER_LENGTH, stdin)

printf("%s", line);
fflush(stdout);

¥
else {

return 0;
Iy

W © 1999-2015 Erlang Solutions Ltd.

= NULL) {

23

Erlang ports

start(ExtPrg) —>
open_port({spawn, ExtPrg}, [stream, {line, 80}).

echo_line(Port, Line) -—>
Port ! {self(), {command,Line}},
get_reply(Port, []).

get_reply(Port, Acc) —>
receive
{Port, {data,{eol,Chars}}} —
{ok, lists:flatten(Acc ++ Chars)};
{Port, {data,{noeol,Chars}}} —
get_reply(Port, Acc ++ Chars)
end.

W © 1999-2015 Erlang Solutions Ltd.

24

Erlang ports: linked-in drivers

e Move functionality inside the Erlang VM

e Behaves like a port

e Can be more efficient than “normal” ports
e No safety

— “other end” is internal

é}(&lg © 1999-2015 Erlang Solutions Ltd.

25

NIFs (Natively implemented functions)

e Implement functions in C

e Call them as “normal” Erlang functions

e Large library for accessing Erlang data structures
in C

e Support for threads

e No safety

W © 1999-2015 Erlang Solutions Ltd. 26

NIFs (Natively implemented functions)

static ERL_NIF_TERM

i2c_read(Er\NifEnvx env, int argc, const ERL_NIF_TERM argvI]) {
unsigned int fd, addr, len;
unsigned char buf[1024], xbdata;
ERL_NIF_TERM term;

/* Get and parse arguments. */
if (l!enif_get_uint(env, argv[0], &fd) ||
lenif_get_uint(env, argv[1l], &addr) ||
lenif_get_uint(env, argv[2], &len))
return enif_make_badarg(env);

/* Select 12c address and read data. *x/
if (ioctl(fd, I2C_SLAVE, addr >> 1) == 0 &&
read(fd, buf, len) == len) {
bdata = enif_make_new_binary(env, len, &term);
memcpy (bdata, buf, len);
return term;
}
else
return enif_make_badarg(env);

é)‘(&lg © 1999-2015 Erlang Solutions Led. 27

NIFs (Natively implemented functions)

loop(St) —>
receive

{i2c_request,From,{read,Addr,Bc}} —> %Read bytes
Buf = i2c_read(St#state.i2c, Addr, Bc),
reply(From, Buf),
loop(St);

{i2c_request,From,{write,Addr,Buf}} —> %Write bytes
ok = i2c_write(St#state.i2c, Addr, Buf),
reply(From, ok),
loop(St);

{i2c_request, From,{request,Addr,Req,Wait,Bc}} —

I2c = St#state.i2c,

ok = i2c_write(I2c, Addr, Req),

timer:sleep(Wait), %Need to wait before reading
Buf = i2c_read(I2c, Addr, Bc),

reply(From, Buf),

Lloop(St);

{i2c_request,From,{requests,Reqs}t} —> %Do requests
Reps = do_requests(Reqs, St#state.i2c),
reply(From, Reps),
loop(St);

stop —>
ok = i2c_close(St#state.i2c)

end.

W © 1999-2015 Erlang Solutions Led. 28

C-nodes

e External OS process behaves as a distributed
Erlang node

e Fail safe

— other end a node

e “Natural” message interface from Erlang

é)\‘m © 1999-2015 Erlang Solutions Ltd.

29

C-nodes

https://github.com/rtraschke/erlang-lua

W © 1999-2015 Erlang Solutions Ltd.

30

https://github.com/rtraschke/erlang-lua

Which one?: native languages

+ Complete access to Erlang/VM properties
+ Fastest on the Erlang VM

+ Conceptually easy to interface (just Erlang)
+ Safe

— Only Erlang equivalent languages
— Usually “need” large environment to be usable

— Libraries, tools, REPL, Emacs mode, ...

W © 1999-2015 Erlang Solutions Ltd.

31

Which one?: non-native languages

+ Good access to Erlang/VM properties
+ Fast data transfer with Erlang

+ Other languages

+ Safe

— Slower than "normal” implementation
— Can be costly to implement
— Need an environment for non-Erlang features

— Global state, mutable data, ...

W © 1999-2015 Erlang Solutions Ltd.

32

Which one?: external systems

+ Can access existing languages/systems
+ Can monitor and manage systems
+ Maximum efficiency available

— Generally slower interface
— Safe or unsafe

— External is safe
— Internal is unsafe

W © 1999-2015 Erlang Solutions Ltd.

33

Thank you

Robert Virding: robert.virding@erlang-solutions.com
@rvirding

W © 1999-2015 Erlang Solutions Ltd.

34

