
1 © Nokia 2016 <Public>

building a scalable geofence platform based on RabbitMQ custom exchanges

• Philippe Dobbelaere, Nokia Bell Labs Antwerp
(philippe.dobbelaere@nokia.com)

• 29-01-2016

2 © Nokia 2016

Three-tier Architecture

Goal: architect for horizontal scalability

Dispatcher

Dispatch Tier

Region Indexer

Index Tier

Filter & queue

Post-filter Tier

Dispatcher

…

Region Indexer

…

Filter & queue

…

Stream

updates Applications

3 © Nokia 2016

AMQP FORWARDING concepts

• messages are published to an exchange

• exchanges either forward or drop the messages

 based on a routing decision

 = no buffering

• exchanges route to exchanges or queues

 binding = f(key)

• queues can buffer messages

 durable queues even persist messages

• messages are consumed from queues

• a queued message can only be consumed once

4 © Nokia 2016

RabbitMQ CONCEPTS

three different areas of parallelism

•8-stage pipeline end-to-end between producer and consumer

•parallelism across connections and channels - with queues acting as synchronisation points

(queues are about the only stateful part of the core AMQP model)

•queues as active erlang processes

5 © Nokia 2016

RABBITMQ exchange IMPLEMENTATION

create(?TX, #exchange { name = XName, durable = Durable, auto_delete =
AutoDelete, arguments = Args }) -> ok
delete(?TX, #exchange { name = XName } , Bindings) -> ok

add_binding(?TX, #exchange { name = XName } , Binding) -> ok
remove_bindings(?TX, #exchange { name = XName } , Bindings) -> ok

route(#exchange{ name = XName } , #delivery{ message = #basic_message
{ routing_keys = Routes, content = #content { payload_fragments_rev =
FragmentsRev } }}) -> [#exchange or #queue]

6 © Nokia 2016

Hilbert space filling curve

not limited to 2D

points that are close on index are also close in n-D

maps both ways between (X, Y) and H_IDX
 e.g. with b=1 we get
 (0,0)  0

 (0,1)  1
 (1,1)  2
 (1,0)  3

b=1

b=2

b=3

7 © Nokia 2016

Hilbert 2d Rasterization

[[s1, e1] , [s2, e2], …]

s1

e1

8 © Nokia 2016

Resolution
Hilbert resolution 17 bits
polygon points: 77
ranges: 23

Hilbert resolution 19 bits
polygon points: 230
ranges: 82

Hilbert resolution 20 bits
polygon points: 437
ranges: 166

9 © Nokia 2016

index tier exchange = x-geo

route(…) ->
 {Status, Hilbert, ObjectId} = extract_Hilbert_Id(Headers),
 FenceDests = geo_dests(Tree, Hilbert). x -> [D2]

add_binding(…) ->

 tree_insert_ranges(Tree, D, Ranges). {D1, [[b, d], [e,f]]} {D2, [[a, c], [e, g]]}

Hilbert_idx
fence_D1
fence_D2

a b c d e f g

{a, [], [D2], [D2]}

{b, [D2], [D1, D2], [D1, D2]}

{c, [D1, D2], [D1, D2], [D1]}

{d, [D1], [D1], []}

{e, [], [D1, D2], [D1, D2]}

{f, [D1, D2], [D1, D2], [D2]}

{g, [D2], [D2], []}

x
<= <=

10 © Nokia 2016

static ERL_NIF_TERM axes_to_line_2D_26b(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) {

// C code to access erlang arguments and interface to C implementation of algo

}

static ErlNifFunc nif_funcs[] = {

 {"axes_to_line_2D_26b", 2, axes_to_line_2D_26b /* , ERL_NIF_DIRTY_JOB_CPU_BOUND */},

 {"line_to_axes_2D_26b", 1, line_to_axes_2D_26b /* , ERL_NIF_DIRTY_JOB_CPU_BOUND */}

};

<Public>

erlang NIF for Hilbert index calculation

- allows to have identical implementations of algo in multiple environments (erlang, nodejs, perl, (c)python, …)
 = polyglot approach for algo (rabbitmq was already polyglot approach for messages)

- easier to code algorithms in environments that support mutable structures

- take care

- this runs on an erlang VM scheduler thread, so should not preempt for more than say 1 ms

- any SIGSEGV will kill erlang VM

11 © Nokia 2016

POST-FILTER TIER EXCHANGE = X-FENCE (stateful fence)

route(…data…)
 Dests = rabbit_router:match_routing_key(Rname, ['_']), %% fanout
 ets:insert(Times, {{Epoch, ObjectId}}),
 ets:insert(Objects, {ObjectId, Epoch}),
 ets:insert(Inserts, {Wr_ctr, ObjectId}).

route(…control…)
 %% immediately trigger removal from Objects , add to Deletes if notified by x-geo

Objects: current view on ObjectId's that are inside the fence

Inserts: list of entering ObjectId's with read/write versioning

Deletes: list of leaving ObjectId's with read/write versioning

Times: remove from Objects, add to Deletes if no new message within x ms

optionally post-filter based on exact polygon so that approximation due to hilbert resolution does
not leak through

12 © Nokia 2016

geofiltering at scale

x-ingress

exch

x-geo exch x-fence exch

exact

filter

x-geo exch

single fence

known world

1 to 1

based on

fence ranges

enter

leave

single fence

single message

worldmap

fence tree

object map

inserts, deletes

client

13 © Nokia 2016

RabbitMQ GEO FENCES

generic production-grade message broker
custom exchanges

- x-ingress: special "shovel" rabbitmq app that uses worldmap to find destination x-geo

(shovel uses amqp based networking, robust in case of flaky networks)

- x-geo: special "fanout" exchange that routes based on hilbert index

- x-fence: special "fanout" exchange that has an objectmap to generate enter and leave
messages

custom exchanges are deployed inside a standard rabbitmq broker
- dedicated machine or cloud VM

- researching erlang clustering/networking extensions that work across cloudified
environments

erlang OTP robustness and performance features
RabbitMQ amqp based federation concept to wire multiple x-geo to a single x-fence

14 © Nokia 2016

- epmd listens on a fixed port (default 4369) and serves a a naming service that maps erlang node
names to erlang rpc (rex) listener ports.

- within an erlang cluster, the distributed connection protocol of net_kernel will contact epmd and
succeeds in setting up a connection to the target erlang node on the port returned by epmd

- when erlang clusters are deployed inside VM environments (or docker containers), ports inside the
container are remapped to other ports at the level of the VM host (must be unique at the VM host)

- net_kernel is not aware of this port remapping. To make matters worse, discovering the port mapping
often involves an API call that needs the port inside the VM as argument.

- conclusion: without modifications to net_kernel:inet_tcp_dist, clustering will not work across VM hosts

- solutions:

1. do not use erlang networking across VM hosts (rabbitmq: federation, shovel uses AMQP/TCP)

2. replace inet_tcp_dist (-proto_dist argument) with a VM aware version

<Public>

RabbitMQ clustering difficult across VM hosts

15 © Nokia 2016

on the downstream cluster:

rabbitmqctl set_parameter federation-upstream my-upstream \
‘ { “uri " : "amqp: //server-name", "expires" :3 600000 [, "exchange": "specific_upstream_exchange"] } '

rabbitmqctl set_policy --apply-to exchanges federate-me "^amq\." \ '{"federation-upstream":"my-upstream")'

all exchanges matching "^amq\." will get an associated upstream exchange.

messages published to the upstream exchanges are copied to the federated exchange

<Public>

RabbitMQ federation

16 © Nokia 2016

fence and exchange management examples

creating a fence
- adding x-fence exchange with bindings to x-geo expressing the Hilbert index ranges of this fence

(if multiple x-geo: select bindings for that x-geo, use rabbitmq federation to collect all messages)

adding an x-geo instance by splitting off a region from an existing x-geo (scaling out)
- create bindings on the new x-geo for all existing x-fence exchanges that are bound to the split

region

- adapt the worldmap so that split region is routed towards new x-geo

- remove bindings to existing x-geo

removing an x-geo instance by joining a region to another x-geo (scaling in)
- create bindings on the target x-geo for all existing x-fence exchanges on the x-geo that will shut

down

- adapt the worldmap so that region is routed towards target x-geo

- remove bindings on x-geo that shuts down, remove x-geo

17 © Nokia 2016

fence management API alternatives (moving fences)

multithreaded AMQP daemon

multithreaded HTTP daemon

multithreaded Erlang RPC daemon
- blocking client (accumulates latency)

- callback driven client (single latency)

AMQPport TCP
daemon

HTTPport TCP
daemon

AMQP protocol
statemachine

REST service
dispatcher

AMQP model

exchange/queue
erlang handler

x-geo state

rabbitMQ
mnesia DB

erlang RPC "rex"
daemon

HTTP client

fence manager

AMQP client erlang RPC
client

x-geo binding itf

nodejs

erlang

mutex + correlator

ra
te

 c
o
n
tro

l

time

