>
>

ERICSSON

ORCHESTRATION

A system for management and orchestration
of distributed heterogeneous cloud

Joacim Halén, Ericsson

Distributed Heterogeneous Cloud

\\

Distributed Heterogeneous Cloud

‘ Big data center with ~10° servers

\\

Distributed Heterogeneous Cloud

‘ Big data center with ~10° servers

‘ Small data center with ~102 servers

\\

Distributed Heterogeneous Cloud

Each data center may run a different Cloud
Operating System or stack, e.g. OpenStack,
CloudStack, OpenNebula, etc.

\\

\\

Architecture (simplified)

Cloud Orchestration Do

» Separate services
Adaptable Northbound Int) RESTfuI APIS

» Multi-tenant support

Scaling » Plug-in based
Service » Applications can use all APls

Adaptable Southbound Interface

Adaptable Southbo

Cloud Execution Domain

openstack webservices” Luiieis

b amazon - e

-,,f:,/
Fundamental Service
Intermediate Level Service

High Level Service
Erlang Factory 2016 | Page 6

Compute and Network Services

aaaaaaaaaaaaaaaaaaaaaa

\\

Compute Service

Extended with'the Concept of location

» Other » Geographical location
—Latency —Region
—Close to IP —Country
—Between two nodes —City
— At end of longest common path —Data center (node)
—Etc. Rack

Host

Erlang Factory 2016 | Page 8

\\

Simple network

\\

Add context

\\

L2

Possible realization

— tunnel — tunnel —

X | D | < | G |-

\\

L2 L2 L2

A Different context

\\

L3

Orchestration Service

\\

Service Container (BNF)

BODY ::= {"service" : {
"name" : STRING,
"vpcRef" : INTEGER,
"parameters"” : { PARAMETERS },
"definitions™ : { DEFINITIONS },
"temporals" : [TEMPORALS],
"scaling" : { SCALING_RULES },
"networks" : [NETWORKS]} }

DEFINITIONS ::= DEFINITION , DEFINITIONS
| DEFINITION
DEFINITION ::= NAME : OBJECT

OBJECT SERVER | PORT | NETWORK

Erlang Factory 2016 | Page 14

\\

EX1 - specification
{

“service” : {
“name” : “Example 17,
“definitions” : {
“sl1l” : {“server” : {.. “Montreal” ..}},
“s2” : {“server” : {.. “San Jose” ..}},
“Ss3” : {“server” : {.. “Stockholm” ..}}
},
“‘networks” : [
{“network” : {
“layer” : 2,
“name” : “Example Network”,
“attributes” : {..},
“ports” : [“S1”, “S2”, “S3”]}

}

Erlang Factory 2016 | Page 15

\\

Scaling Service

\\

Scaling Service

« Based on set of application defined rules used as
templates for how to add or remove infrastructure

resources
» Defines limits on minimal and maximal amount of
resources
» Application has full control on how to activate rules:

* By using API calls
* By defining automatic triggers specifying metrics
to be monitored and thresholds to be met

Erlang Factory 2016 | Page 17

\\

Scaling Rule (BNF)

SCALING_RULE ::= {"scaling-rule"
”name” : NAME,
”parameters” :
”initial param
”scale out” :
”scale in” : S
”scale up” : S
”scale down”
Ytriggers” : |
“template” : T
Ynotify” : [R

}}

Erlang Factory 2016 | Page 18

{ PARAMETERS 1},
eters” : IPARAMETERS },
SCALE-OUT,
CALE-IN,
CALE-UP,

: SCALE-DOWN,

TRIGGERS],
EMPLATE,
ECIPIENTS]

\\

A Closer Look

?

\\

Plug-ins

» Simple “behavior”

» Two callback functions
load(Config) -> {ok, State}
unload(State) -> ok

» All user defined functions that are exported must take an extra parameter
“State”
foo(P1, P2, State) -> {reply, Reply, State}
» Plug-ins can be defined to be pre-loaded or loaded at first use
» Plug-ins have a user defined type

Erlang Factory 2016 | Page 20

\\

PIM — Plug-in Manager

» Basic plug-in management
» Makes sure a plug-in is loaded when needed

» Thread safe, execution of user defined functions in a plug-in is done in the
calling process, not in pim

» All calls to a plug-in is done through pim
pim:invoke(Name, Function, Args)

» Finds plug-in based on name or type

» Search functions to find a plug-in or set of plug-ins

» More complex selection of plug-ins is done in wrappers

Erlang Factory 2016 | Page 21

\\

Wrappers

» wpim — Wind Plug-In Manager

» Location based selection of plug-ins
wpim:invoke(Node, Name, Function, Args)
wpim:invoke(Node, Type, Function, Args)
wpim:invoke(NodeA, NodeB, Type, Function, Args)
wpim:invoke(Name, Function, Args)

» drim — Driver Manager

» Singleton plug-ins, i.e. drivers

» Example, database driver

Erlang Factory 2016 | Page 22

\\

Code snippet

LocalToken = get local token(Tenant, Node),
case wpim:invoke (Node,

?WPIM COMPUTE,

server create,

[Node, LocalToken, Server,
of

Erlang Factory 2016 | Page 23

Flavor,

\\

Image])

Evirt

» Erlang AP to libvirt

» One-to-one mapping

» 280+ functions in API

» Supports libvirt 0.9.3

» Full support for callback functions
» Based on aspd

Erlang Factory 2016 | Page 24

=
>

ASPD

Asynchronous Synchronous Port Driver

» Bridge between libraries

—Erlang to C
Erlang C —C to Erlang
4_, » Simple to use
» Support callback functions
> » Library of convenience macros

» Support for logging

Erlang Factory 2016 | Page 25

\\

Testing

» Using eunit

» Tests at each level test that level and
all levels involved below

» HTTP-client plug-in emulates a
distributed OpenStack based cloud

» Wind does not know if it runs against
a real cloud or the emulator

Erlang Factory 2016 | Page 26

Normal mode

Internal
Southbound
request

{

http_client

ibrowse plugin

External
Southbound
request

\\

Testing

» Using eunit

» Tests at each level test that level and
all levels involved below

» HTTP-client plug-in emulates a
distributed OpenStack based cloud

» Wind does not know if it runs against
a real cloud or the emulator

Erlang Factory 2016 | Page 27

Test mode

Internal
Southbound
request

m
= g

emulator_plugin

\\

\\

Reflection

Northbound request & response

» Most code handling a request
executes in the worker
NeSOUIee process assigned by YAWS

Manager Manager
» Request to internal processes
are in most cases very short
Other services

Database » Less risk of deadlock in

4 : :
s \ complicated chains

ibrowse
worker

Database

>,

Southbound request & response

Erlang Factory 2016 | Page 28

Erlang Factory 2016 | Page 29

\\

\\

Why ArtEmis?

» Have been focusing on scheduling/placement in very large distributed clouds
—No large scale physical test-beds
—Small scale physical test-beds are misleading
— Thus, simulations!

» Unfortunately, the existing simulation platforms are not suitable for cloud scales
—Well-known ones only run on a single computer
— Simulation time does not scale with available resources
—Thus, they are limited to a few thousand simulation entities and events per second

Erlang Factory 2016 | Page 30

\\

What is Artemis?

» Artemis is a cloud simulation suite built on top of SimDiasca

» Artemis inherits scalability from Erlang and SimDiasca
— Simulation run times scale with available resources
—Handles millions of simulation entities and hundreds of thousands of events per second

» Provides a set of templates and models for the cloud

» The ultimate goal is to help developers focus on
— Evolution modelling of both available resources and workloads
—Development of strategies in as many problem domains within cloud computing as possible
—No plumbing!

Erlang Factory 2016 | Page 31

Overview

Cd
P Y

Cloud Simulator Engine

/" Control Plane
- Logical resource grouping

(\
1

[1

| N

| |

l _ _ . > l

| - Scheduling algorithm =] - !

: - Resource control for fault A ;

| and utilization i | Cloud

i Resource Control Scheduler Resource Groups) i Leszzt;rce
Simulation ' : >
scenarios i AY AY i Ztlatlscjlcs

S I ! ou

Applicat I
m%%leﬁi o i / Resource Plane -\ (Consumption Plane 11\ I | performance

i — ! L
Resource E - Resource models (CPU, ...) oSN - Application life-cycle ~ | statistics
models : - Node2Node connections - Application graph ;@\ Lo
Policies i - Fault model, ... - Workload evolution model 4 @9‘@ i Dlﬂl}ﬂ

| - Resource groups (racks, ... - Task resource footprint model :

AN groups () J\) i

1

I = I

: Common @E}l :

l < :

- 1

: SimDiasca X — l

. (smo = & & =]

N R N SN R NN SN NN NN RN N SN NN SN NN R NN N SN NN R NN NN NN SN R NN SN R SN NN S NN S NN N N NN N NN NN N NN RN NN SN N NN SN N SN N S N R NN N N NN R RN S N SN N NN SN N SN R S S S

Erlang Factory 2016 | Page 32

\\

Declaration of the test module

SimDiasca and Artemis libraries

gnodule(generic_control agent specialization stress test).

-include("test_constructs.hrl").
-include("common.hrl").
-include("resource plane.hrl").

|

and inclusion of necessary EE—
1
1

-spec run() -> no_return().

Declaration of simulation and |
deployment settings .

run() ->
2test start,
SimulationSettings = #simulation settings{simulation name = "Stress Test with Test Agent Inheriting from Generic Control Agent"},
DeploymentSettings = #deployment settings{
computing_hosts = {use_host_file otherwise local, "sim-diasca-host-candidates.txt"},
additional _elements to deploy = [{".", code}, {"..", code}, {"../../resource-plane", code}, {"../../common", code}]
enable_data_exchanger = false,

enable_performance_tracker false
D
LoadBalancingSettings

DeploymentManagerPid

#load balancing settings{},
sim_diasca:init(SimulationSettings, DeploymentSettings, LoadBalancingSettings),

Declaration of evolution and

physical resource models, and —>
. 1

creation of control agents !

GIM

Status

Latency Evolution
CPU_Evolution
Memory Evolution
Disk Evolution
Bandwidth Evolution
Domain_Evolution

class_GlobalIdentificationManager:new link([])

common:create status(true, {static}),

common:create_evolution({distribution, {uni, 16, 1000}}, {constant, ©.1}),
common:create_evolution({distribution, {uni, 160, 1000}}, {distribution, {uni, 1, 16}}),
common:create_evolution({distribution, {uni, 160, 1000}}, {distribution, {uni, 4, 32}}),
common:create_evolution({distribution, {uni, 160, 1000}}, {distribution, {uni, 560, 2000}}),
common:create evolution({distribution, {uni, 100, 1000}}, {distribution, {uni, 160, 1000}}),
common:create evolution({static}, {static}),

Latency common:create attribute(latency, milliseconds, 0.1, Latency Evolution)
CPU resource_plane:create physical resource(processing, cores, 16, ©, CPU Evolution),
Memory resource_plane:create physical resource(memory, gigaBytes, 32, ©, Memory Evolution)
Disk resource_plane:create physical resource(storage, gigaBytes, 2000, ©, Disk Evolution),
Bandwidth resource_plane:create _physical resource(network, megabps, 1000, Bandwidth Evolution),
Link 1 resource_plane:create_physical link(some connection point, Status, [Latency], [Bandwidth]),
Link 2 resource_plane:create_physical link(some connection point, Status, [Latency], [Bandwidth]),
Link 3 resource plane:create physical link(some connection point, Status, [Latency], [Bandwidth]),
Link 4 resource plane:create physical link(some connection point, Status, [Latency], [Bandwidth])
Node resource _plane:create_server(GIM, Status, [], [CPU, Memory, Disk], [Link 1, Link 2, Link 3,
Domain resource_plane:create physical domain(true, undefined, [Node], Domain Evolution),
lists:foreach(

fun() ->

class_Actor:create_initial actor(class _GenericControlAgentSpecialization, ["Test Agent 1", [Domain]])
end, lists:seq(l, 500000)
)

Link_41),

Running the simulation and .
finalizing upon termination i

Erlang Factory 2016 | Page 33

SimulationDuration = 10000,
DeploymentManagerPid ! {getRootTimeManager, [], self()},
RootTimeManagerPid = test_receive(),
RootTimeManagerPid ! {startFor, [SimulationDuration, self()]},
receive

simulation_stopped ->

?test info("Simulation stopped spontaneously, specified stop tick must have been reached.")

end,
?test_info("Browsing the report results, if in batch mode."),
class_ResultManager:browse reports(),

i 1 H ()

?test_stop.

Possible use cases

» Modelling large-scale cloud dynamics

» Methodologies for service placement in very large scale distributed clouds
» Methodologies for dynamic resource management
» Methodologies for fault tolerance, failure resilience and high-availability

» Methodologies for monitoring resource reservation/availability/usage

Erlang Factory 2016 | Page 34

\\

Joacim Halén
Senior Specialist in Software Design and Cloud Automation
joacim.halen@ericsson.com

Erlang Factory 2016 | Page 35

\\

ERICSSON

