
Build Scientific Computing
Infrastructure with Rebar3 and Docker

 Eric Sage

A scientific telecommunications network

“Hello, I’d like an automated gene ontology please!”

Agenda

 -  An example biological service

-  Gather requirements

-  Bad Solutions

-  Our Solution

-  Details

-  Evaluation

Biology today, a quick example:

Gene Annotations
A network where leaves represent genes and parents represent the relationships
of genes (Gene products).

Gene Gene

Relationship

Example: GO (Gene Ontology) a way of
standardizing the annotation.

What can we do with a biological network?

-  Differential Analysis - analyze and predict perturbations and alterations

-  Big data integrations - models for clinical diagnoses and predictions

-  multi-scale - link networks together to create hierarchical

Going beyond GO: Automation
Gene annotations as a service

Example: atgO, builds annotations using machine learning

Annotations as a service Data Annotated
Network

Annotation as a service

The Goal

A world where a biologist can write biologically
useful code that can last and make it available to
the masses.

A Problem with the Computational Ecosystem

Biologists:

-  Have little time to invest

-  Construct poor implementations

-  Suffer from reinvention

Software is hard, Biology is hard, you should only pick one.

Gathering Requirements

We need systems that we can

-  scale

-  distribute

-  locate

-  evolve

-  verify

A Service Oriented Architecture Approach

With a SOA we can provide

-  Standardization

-  Discoverability

-  Evolvability

Service Service Service

Network Biology Community

How to implement a SOA? A few OK ideas
-  Enforce an ecosystem

-  Enforce quality (The Jeff Bezos mandate)

-  Enforce an enterprise tool (Enterprise Service Bus)

We need to shepard emerging computational communities with as
little overhead as possible.

 Clients

Elsa: The Erlang Submit Agent

-  Allows clients to submit jobs to a network of services.

-  Provides a protocol for long running jobs, a must have for scientific
computing.

-  Handles service discovery, service versioning, and connection quality.

 Elsa Node

AaaS User

AaaS User

 Services

v1

v1

v2 AaaS

Service Domains
Elsa as a Relay network

-  Clients send requests to
nodes.

-  A node can relay to another
node in order to fulfill a
request.

-  A set of connected nodes

-  forms a domain.

Elsa Node

Elsa Node

Elsa Node Elsa Node

Service Service

 AaaS AaaS

Client

Client Client

 Client

Service

Service Domain API

Elsa also provides a restful API available to clients, services, and external tools
that provides:

-  Service Discovery

-  Task Resources

-  Introspection

-  Atomic resources (threads)

-  Logs

A regular service call

GET http://www.mappingservice.com/mapping/4324234

The anatomy of a service call

GET http://www.myelsadomain.com/idmapper/v1.0.1/mapping/4324234

The location of an elsa
node in the domain.

The service name

The service version

The service endpoint

Service Calls allow:
-  API Preserveration
-  Advanced versioning

-  v0.1.0^
-  v0.1.*

If you know REST, you know how to build a service

-  All scientists create REST services.

-  Vast majority of languages provide easy to use web frameworks

-  A short jump to convert a CLI command or any function to a REST handler

-  Resources abound online

Elsa Node Service

Step 1) Register the server via json

Step 2) Receive a request

Step 3) Fulfill request, go to step 2

A sample registration
{
 service: “idmapper”,
 version: “v1”,
 instances: [We can register as many instances as want
 {
 location: “http://123.321.123.321:8080”,
 threads: 32, Optional
 syslog: “http://syslog.myservices.org:3000” Optional
 },
 {
 location: “http://123.321.123.321:8081”
 }
]
}

Elsa handles

-  Versioning
-  Finding instances
-  Forwarding pertinent logs
-  Load balancing
-  Discovery
-  Long running jobs
-  Partial service failure

Erlang provides robustness in
the face of questionable service
quality!

Deploying Nodes without fear

Even if it’s easy to call a service, and write a service, deploying nodes must
also require little effort.

Tools in the arsenal:

-  Rebar3

-  Docker

-  OTP

Elsa Development

-  Elsa, written from inside of a container

-  Two Dockerfiles, dev and prod

-  Dev: Uses a large custom dev base image

-  Prod: The sys.config get’s swapped for a container specific sys.config.docker

-  Prod creates releases, dev uses rebar3 shell

-  Rebar3 makes Erlang development simple for everyone (Thanks Rebar3 team!)

-  Set docker entrypoint to rebar

Erlang
Development

Container

AWS Instance

Macbook

Service Deployment: Docker on-build

On-build injected registration service

Biological Service

FROM bioservice:R
FROM bioservice:Python
FROM bioservice:Node

Note: This isn’t the same as a per
language framework

Deployment made easy

-  Just use Docker

-  Deploy nodes, services using containers

-  Deploy entire domains using compose or kubernetes, pick your favorite

 Note: Elsa Nodes need to run one container to a host!

Elsa Evaluation

Pros:

-  Little investment

-  Easy to use

-  Benefits of SOA

-  Central point of development

Con:

-  MS delay for round trip requests

-  Central point of failure

Net: A big win for the scientific community.

Examples of computing in biology

1. Protein structure determination with X-ray crystallography or NMR.

2. Whole genome sequencing and assembly

3. Simulation of biomolecules with molecular dynamics

4. Gene expression analysis

5. Phylogenetic (evolutionary) analysis

Synthetic Evolution: Where to go next

-  Administration GUI

-  Pluggable service scheduling

-  Optional service patterns

-  Reduce node latency

-  Increase distributability

-  Global Elsa network

Acknowledgements

-  Dr. Barry Demchak and Dr. Trey Ideker

-  Cytoscape team and Ideker lab

-  UCSD Health Sciences

Going Further

-  http://www.cytoscape.org/ Cytoscape Website

-  https://www.github.com/cytoscape-ci/elsa/ Project Elsa

-  https://www.github.com/ericsage/neoelsa/ Next Version of Elsa

