
An Erlang-Based Philosophy for Service
Reliability

Jamshid Mahdavi

March 10, 2016

About me!
Networking, TCP, Proxies

@WhatsApp since 2013

First experience with Erlang

Work on media servers and media delivery

About WhatsApp!
Messaging app including chat, media delivery, voice
calling

Bought by Facebook in 2014

Small team

Growing user base

Specs!
Bare metal servers

Mostly dual CPU, 128GB – 768GB
Quad NIC

FreeBSD 10

Erlang R16B

Why This Talk?!
Not really a technical talk

From our contacts at facebook

we are “known for reliability”

Topics

 Development Practices
Deployment Practices
Handling Failures
Monitoring and Alerts

Reliability: Setting Expectations!
Rule #1: Never lose a message

Rule #2: Availability trumps everything

Six nines rule: Fail < 1 in a million

Development!
Minimal footprint

Use only the software we absolutely need

$ pstree
-+= 00001 root /sbin/init --
 |--= 00856 root /sbin/devd
 |--= 01049 root /usr/sbin/syslogd -ss
 |--= 01197 root /usr/sbin/ntpd -c /etc/ntp.conf -p /var/run/ntpd.pid -f /var/db/
ntpd.drift
 |-+= 01219 root /usr/bin/perl -w /usr/local/bin/wsar -H -log (perl5.16.3)
 | \--- 01220 root /usr/bin/perl -w /usr/local/bin/wsar -H -log (perl5.16.3)
 |-+= 01234 root /usr/sbin/cron -m -s
 | \-+- 74065 root cron: running job (cron)
 | \--= 74066 root /usr/bin/perl -w /usr/local/bin/wsar -all -log (perl5.16.3)
 |--- 17433 whatsapp /usr/local/lib/erlang/erts-5.10.1/bin/epmd -daemon
 |-+- 17435 whatsapp /usr/local/lib/erlang/erts-5.10.1/bin/beam.smp -zdbbl 16384 -
swt very_low -sbt tnnps -sbwt none -P 7200000 -- -root /usr/local/lib/erlang -
progname erl -- -home
 | \-+= 17447 whatsapp inet_gethost 4
 | |--- 46176 whatsapp inet_gethost 4
 | |--- 58420 whatsapp inet_gethost 4
 | |--- 58422 whatsapp inet_gethost 4
 | \--- 58423 whatsapp inet_gethost 4
 |--= 18544 whatsapp panam/bin/panam
 |--= 01299 root /usr/libexec/getty 3wire.19200 ttyu1
 |--= 01291 root /usr/libexec/getty Pc ttyv0  
 [+ 7 more]

Development!
Minimal footprint

Use only the software we absolutely need

“Be careful”

I.e.: don’t make mistakes"
This is intended to capture a lot of things that we *don’t* do
 test automation, code reviews, etc.

Development!
Minimal footprint

Use only the software we absolutely need

“Be careful”

I.e.: don’t make mistakes"
This is intended to capture a lot of things that we *don’t* do
 test automation, code reviews, etc.

Investigate every bug

Benefits of Erlang!
Compact code base (20k LOC for media servers)

Silo architecture

Failures isolate to one feature – minimize user-visible
impact

Server migrations

Good opportunities for rewriting / refactoring systems

Deployment Practices!
Automation

View as a way to minimize human effort
NOT trying to take humans out of the loop (in most cases)

All deploys are manual

Friction by design
Erlang hot load – zero dropped connections or requests

Lots of small / simple deploys

Change slowly
Value stability

Failure Modes!
Hardware

Ram, disks, nics are common
Occasional more esoteric stuff

Network

Work with our vendor on keeping this perfect

Software

Bugs do happen
Problem scope is usually apparent

Monitoring!
One monitoring script (“mon.sh”) runs on all of our servers

Hardware and certain classes of software issues (e.g. backlog)
1005 LOC; + extra 600 LOC for “disk” systems

Several external health check scripts

mms_mon, www_mon, dns_mon, cdn_mon, …

Special full mesh monitoring for networking

Used for debugging backend network problems

Trend-based alerts

Percent errors, total traffic, etc.

Handling Alerts!
Alerts are “broadcast” on WhatsApp to whole team

Lucky people also get SMS
Ring every minute until fixed

“Fix Fast” vs. “Deep Redundancy”

Expect to fix problems when they happen

Don’t try to build most systems to be resilient to double faults

Since 2010, no completely lost partitions
Occasionally have temporary partition unavailable or inconsistent

Add new alarms whenever we find an issue which doesn’t alert us

Summary!
Keep it small, keep it simple

Complexity makes systems harder to maintain and debug

#letitcrash

Don’t spend a lot of effort handling things which aren’t
supposed to happen

Zero bugs / Fix Fast

The longer a bug lingers, the more it costs

Questions?!

